Skip to content
Snippets Groups Projects
fadecandy.cpp 15.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Fadecandy Firmware
     * 
     * Copyright (c) 2013 Micah Elizabeth Scott
     * 
     * Permission is hereby granted, free of charge, to any person obtaining a copy of
     * this software and associated documentation files (the "Software"), to deal in
     * the Software without restriction, including without limitation the rights to
     * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
     * the Software, and to permit persons to whom the Software is furnished to do so,
     * subject to the following conditions:
     * 
     * The above copyright notice and this permission notice shall be included in all
     * copies or substantial portions of the Software.
     * 
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
     * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
     * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
     * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     */
    
    #include <math.h>
    
    #include <algorithm>
    
    #include "OctoWS2811z.h"
    
    #include "fc_usb.h"
    #include "fc_defs.h"
    
    #include "HardwareSerial.h"
    
    
    // USB data buffers
    static fcBuffers buffers;
    
    // Double-buffered DMA memory for raw bit planes of output
    static DMAMEM int ledBuffer[LEDS_PER_STRIP * 12];
    static OctoWS2811z leds(LEDS_PER_STRIP, ledBuffer, WS2811_800kHz);
    
    
    /*
     * Residuals for temporal dithering. Usually 8 bits is enough, but
     * there are edge cases when it isn't, and we don't have the spare CPU cycles
     * to saturate values before storing. So, 16-bit it is.
     */
    typedef int16_t residual_t;
    static residual_t residual[CHANNELS_TOTAL];
    
    // Reserved RAM area for signalling entry to bootloader
    extern uint32_t boot_token;
    
    
    static inline uint32_t calculateInterpCoefficient()
    
    {
        /*
         * Calculate our interpolation coefficient. This is a value between
         * 0x0000 and 0x10000, representing some point in between fbPrev and fbNext.
         *
         * We timestamp each frame at the moment its final packet has been received.
         * In other words, fbNew has no valid timestamp yet, and fbPrev/fbNext both
         * have timestamps in the recent past.
         *
         * fbNext's timestamp indicates when both fbPrev and fbNext entered their current
         * position in the keyframe queue. The difference between fbPrev and fbNext indicate
         * how long the interpolation between those keyframes should take.
         */
    
    
        if (buffers.flags & CFLAG_NO_INTERPOLATION) {
            // Always use fbNext
            return 0x10000;
        }
    
    
        uint32_t now = millis();
        uint32_t tsPrev = buffers.fbPrev->timestamp;
        uint32_t tsNext = buffers.fbNext->timestamp;
    
        uint32_t tsDiff = tsNext - tsPrev;
        uint32_t tsElapsed = now - tsNext;
    
        // Careful to avoid overflows if the frames stop coming...
        return (std::min<uint32_t>(tsElapsed, tsDiff) << 16) / tsDiff;
    
    ALWAYS_INLINE static inline uint32_t lutInterpolate(const uint16_t *lut, uint32_t arg)
    
        /*
         * Using our color LUT for the indicated channel, convert the
         * 16-bit intensity "arg" in our input colorspace to a corresponding
         * 16-bit intensity in the device colorspace.
    
         *
         * Remember that our LUT is 257 entries long. The final entry corresponds to an
         * input of 0x10000, which can't quite be reached.
    
         *
         * 'arg' is in the range [0, 0xFFFF]
    
        unsigned index = arg >> 8;          // Range [0, 0xFF]
        unsigned alpha = arg & 0xFF;        // Range [0, 0xFF]
        unsigned invAlpha = 0x100 - alpha;  // Range [1, 0x100]
    
        // Result in range [0, 0xFFFF]
    
        return (lut[index] * invAlpha + lut[index + 1] * alpha) >> 8;
    
    static uint32_t updatePixel(uint32_t icPrev, uint32_t icNext,
    
        const uint8_t *pixelPrev, const uint8_t *pixelNext,
    
        const uint16_t *lut, residual_t *pResidual)
    
    {
        /*
         * Update pipeline for one pixel:
         *
         *    1. Interpolate framebuffer
         *    2. Interpolate LUT
         *    3. Dithering
    
         *
         * icPrev in range [0, 0x1010000]
         * icNext in range [0, 0x1010000]
         * icPrev + icNext = 0x1010000
    
         */
    
        // Per-channel linear interpolation and conversion to 16-bit color.
    
        // Result range: [0, 0xFFFF] 
    
        int iR = (pixelPrev[0] * icPrev + pixelNext[0] * icNext) >> 16;
        int iG = (pixelPrev[1] * icPrev + pixelNext[1] * icNext) >> 16;
        int iB = (pixelPrev[2] * icPrev + pixelNext[2] * icNext) >> 16;
    
    
        // Pass through our color LUT
    
        // Result range: [0, 0xFFFF] 
    
        iR = lutInterpolate(&lut[0 * LUT_CH_SIZE], iR);
        iG = lutInterpolate(&lut[1 * LUT_CH_SIZE], iG);
        iB = lutInterpolate(&lut[2 * LUT_CH_SIZE], iB);
    
    
        // Incorporate the residual from last frame
        iR += pResidual[0];
        iG += pResidual[1];
        iB += pResidual[2];
    
    
        /*
         * Round to the nearest 8-bit value. Clamping is necessary!
         * This value might be as low as -128 prior to adding 0x80
         * for rounding. After this addition, the result is guaranteed
         * to be >= 0, but it may be over 0xffff.
         *
         * This rules out clamping using the UQADD16 instruction,
         * since the addition itself needs to allow overflow. Instead,
         * we clamp using a separate USAT instruction.
         */
    
        int r8 = __USAT(iR + 0x80, 16) >> 8;
        int g8 = __USAT(iG + 0x80, 16) >> 8;
        int b8 = __USAT(iB + 0x80, 16) >> 8;
    
    
        // Compute the error, after expanding the 8-bit value back to 16-bit.
    
        pResidual[0] = iR - (r8 * 257);
        pResidual[1] = iG - (g8 * 257);
        pResidual[2] = iB - (b8 * 257);
    
        // Pack the result, in GRB order.
    
        return (g8 << 16) | (r8 << 8) | b8;
    
    static void updateDrawBuffer(unsigned interpCoefficient)
    
    {
        /*
         * Update the LED draw buffer. In one step, we do the interpolation,
         * gamma correction, dithering, and we convert packed-pixel data to the
         * planar format used for OctoWS2811 DMAs.
    
         *
         * "interpCoefficient" indicates how far between fbPrev and fbNext
         * we are. It is a fixed point value in the range [0x0000, 0x10000],
         * corresponding to 100% fbPrev and 100% fbNext, respectively.
    
         */
    
        // For each pixel, this is a 24-byte stream of bits (6 words)
        uint32_t *out = (uint32_t*) leds.getDrawBuffer();
    
    
    Micah Elizabeth Scott's avatar
    Micah Elizabeth Scott committed
        /*
         * Interpolation coefficients, including a multiply by 257 to convert 8-bit color to 16-bit color.
         * You'd think that it would save clock cycles to calculate icPrev in updatePixel(), but this doesn't
         * seem to be the case.
    
         *
         * icPrev in range [0, 0x1010000]
         * icNext in range [0, 0x1010000]
         * icPrev + icNext = 0x1010000
    
        uint32_t icPrev = 257 * (0x10000 - interpCoefficient);
        uint32_t icNext = 257 * interpCoefficient;
    
    Micah Elizabeth Scott's avatar
    Micah Elizabeth Scott committed
        /*
         * Pointer to the residual buffer for this pixel. Calculating this here rather than in updatePixel
         * saves a lot of clock cycles, since otherwise updatePixel() immediately needs to do a load from
         * constant pool and some multiplication.
         */
    
    
        residual_t *pResidual = residual;
    
    
        for (int i = 0; i < LEDS_PER_STRIP; ++i, pResidual += 3) {
    
            // Six output words
            union {
                uint32_t word;
                struct {
                    uint32_t p0a:1, p1a:1, p2a:1, p3a:1, p4a:1, p5a:1, p6a:1, p7a:1,
                             p0b:1, p1b:1, p2b:1, p3b:1, p4b:1, p5b:1, p6b:1, p7b:1,
                             p0c:1, p1c:1, p2c:1, p3c:1, p4c:1, p5c:1, p6c:1, p7c:1,
                             p0d:1, p1d:1, p2d:1, p3d:1, p4d:1, p5d:1, p6d:1, p7d:1;
                };
            } o0, o1, o2, o3, o4, o5;
    
            /*
             * Remap bits.
    
    Micah Elizabeth Scott's avatar
    Micah Elizabeth Scott committed
             *
             * This generates compact and efficient code using the BFI instruction.
    
            uint32_t p0 = updatePixel(icPrev, icNext,
                buffers.fbPrev->pixel(i + LEDS_PER_STRIP * 0),
                buffers.fbNext->pixel(i + LEDS_PER_STRIP * 0),
                buffers.lutCurrent, pResidual + LEDS_PER_STRIP * 3 * 0);
    
    
            o5.p0d = p0;
            o5.p0c = p0 >> 1;
            o5.p0b = p0 >> 2;
            o5.p0a = p0 >> 3;
            o4.p0d = p0 >> 4;
            o4.p0c = p0 >> 5;
            o4.p0b = p0 >> 6;
            o4.p0a = p0 >> 7;
            o3.p0d = p0 >> 8;
            o3.p0c = p0 >> 9;
            o3.p0b = p0 >> 10;
            o3.p0a = p0 >> 11;
            o2.p0d = p0 >> 12;
            o2.p0c = p0 >> 13;
            o2.p0b = p0 >> 14;
            o2.p0a = p0 >> 15;
            o1.p0d = p0 >> 16;
            o1.p0c = p0 >> 17;
            o1.p0b = p0 >> 18;
            o1.p0a = p0 >> 19;
            o0.p0d = p0 >> 20;
            o0.p0c = p0 >> 21;
            o0.p0b = p0 >> 22;
            o0.p0a = p0 >> 23;
    
    
            uint32_t p1 = updatePixel(icPrev, icNext,
                buffers.fbPrev->pixel(i + LEDS_PER_STRIP * 1),
                buffers.fbNext->pixel(i + LEDS_PER_STRIP * 1),
                buffers.lutCurrent, pResidual + LEDS_PER_STRIP * 3 * 1);
    
    
            o5.p1d = p1;
            o5.p1c = p1 >> 1;
            o5.p1b = p1 >> 2;
            o5.p1a = p1 >> 3;
            o4.p1d = p1 >> 4;
            o4.p1c = p1 >> 5;
            o4.p1b = p1 >> 6;
            o4.p1a = p1 >> 7;
            o3.p1d = p1 >> 8;
            o3.p1c = p1 >> 9;
            o3.p1b = p1 >> 10;
            o3.p1a = p1 >> 11;
            o2.p1d = p1 >> 12;
            o2.p1c = p1 >> 13;
            o2.p1b = p1 >> 14;
            o2.p1a = p1 >> 15;
            o1.p1d = p1 >> 16;
            o1.p1c = p1 >> 17;
            o1.p1b = p1 >> 18;
            o1.p1a = p1 >> 19;
            o0.p1d = p1 >> 20;
            o0.p1c = p1 >> 21;
            o0.p1b = p1 >> 22;
            o0.p1a = p1 >> 23;
    
    
            uint32_t p2 = updatePixel(icPrev, icNext,
                buffers.fbPrev->pixel(i + LEDS_PER_STRIP * 2),
                buffers.fbNext->pixel(i + LEDS_PER_STRIP * 2),
                buffers.lutCurrent, pResidual + LEDS_PER_STRIP * 3 * 2);
    
    
            o5.p2d = p2;
            o5.p2c = p2 >> 1;
            o5.p2b = p2 >> 2;
            o5.p2a = p2 >> 3;
            o4.p2d = p2 >> 4;
            o4.p2c = p2 >> 5;
            o4.p2b = p2 >> 6;
            o4.p2a = p2 >> 7;
            o3.p2d = p2 >> 8;
            o3.p2c = p2 >> 9;
            o3.p2b = p2 >> 10;
            o3.p2a = p2 >> 11;
            o2.p2d = p2 >> 12;
            o2.p2c = p2 >> 13;
            o2.p2b = p2 >> 14;
            o2.p2a = p2 >> 15;
            o1.p2d = p2 >> 16;
            o1.p2c = p2 >> 17;
            o1.p2b = p2 >> 18;
            o1.p2a = p2 >> 19;
            o0.p2d = p2 >> 20;
            o0.p2c = p2 >> 21;
            o0.p2b = p2 >> 22;
            o0.p2a = p2 >> 23;
    
    
            uint32_t p3 = updatePixel(icPrev, icNext,
                buffers.fbPrev->pixel(i + LEDS_PER_STRIP * 3),
                buffers.fbNext->pixel(i + LEDS_PER_STRIP * 3),
                buffers.lutCurrent, pResidual + LEDS_PER_STRIP * 3 * 3);
    
    
            o5.p3d = p3;
            o5.p3c = p3 >> 1;
            o5.p3b = p3 >> 2;
            o5.p3a = p3 >> 3;
            o4.p3d = p3 >> 4;
            o4.p3c = p3 >> 5;
            o4.p3b = p3 >> 6;
            o4.p3a = p3 >> 7;
            o3.p3d = p3 >> 8;
            o3.p3c = p3 >> 9;
            o3.p3b = p3 >> 10;
            o3.p3a = p3 >> 11;
            o2.p3d = p3 >> 12;
            o2.p3c = p3 >> 13;
            o2.p3b = p3 >> 14;
            o2.p3a = p3 >> 15;
            o1.p3d = p3 >> 16;
            o1.p3c = p3 >> 17;
            o1.p3b = p3 >> 18;
            o1.p3a = p3 >> 19;
            o0.p3d = p3 >> 20;
            o0.p3c = p3 >> 21;
            o0.p3b = p3 >> 22;
            o0.p3a = p3 >> 23;
    
    
            uint32_t p4 = updatePixel(icPrev, icNext,
                buffers.fbPrev->pixel(i + LEDS_PER_STRIP * 4),
                buffers.fbNext->pixel(i + LEDS_PER_STRIP * 4),
                buffers.lutCurrent, pResidual + LEDS_PER_STRIP * 3 * 4);
    
    
            o5.p4d = p4;
            o5.p4c = p4 >> 1;
            o5.p4b = p4 >> 2;
            o5.p4a = p4 >> 3;
            o4.p4d = p4 >> 4;
            o4.p4c = p4 >> 5;
            o4.p4b = p4 >> 6;
            o4.p4a = p4 >> 7;
            o3.p4d = p4 >> 8;
            o3.p4c = p4 >> 9;
            o3.p4b = p4 >> 10;
            o3.p4a = p4 >> 11;
            o2.p4d = p4 >> 12;
            o2.p4c = p4 >> 13;
            o2.p4b = p4 >> 14;
            o2.p4a = p4 >> 15;
            o1.p4d = p4 >> 16;
            o1.p4c = p4 >> 17;
            o1.p4b = p4 >> 18;
            o1.p4a = p4 >> 19;
            o0.p4d = p4 >> 20;
            o0.p4c = p4 >> 21;
            o0.p4b = p4 >> 22;
            o0.p4a = p4 >> 23;
    
    
            uint32_t p5 = updatePixel(icPrev, icNext,
                buffers.fbPrev->pixel(i + LEDS_PER_STRIP * 5),
                buffers.fbNext->pixel(i + LEDS_PER_STRIP * 5),
                buffers.lutCurrent, pResidual + LEDS_PER_STRIP * 3 * 5);
    
    
            o5.p5d = p5;
            o5.p5c = p5 >> 1;
            o5.p5b = p5 >> 2;
            o5.p5a = p5 >> 3;
            o4.p5d = p5 >> 4;
            o4.p5c = p5 >> 5;
            o4.p5b = p5 >> 6;
            o4.p5a = p5 >> 7;
            o3.p5d = p5 >> 8;
            o3.p5c = p5 >> 9;
            o3.p5b = p5 >> 10;
            o3.p5a = p5 >> 11;
            o2.p5d = p5 >> 12;
            o2.p5c = p5 >> 13;
            o2.p5b = p5 >> 14;
            o2.p5a = p5 >> 15;
            o1.p5d = p5 >> 16;
            o1.p5c = p5 >> 17;
            o1.p5b = p5 >> 18;
            o1.p5a = p5 >> 19;
            o0.p5d = p5 >> 20;
            o0.p5c = p5 >> 21;
            o0.p5b = p5 >> 22;
            o0.p5a = p5 >> 23;
    
    
            uint32_t p6 = updatePixel(icPrev, icNext,
                buffers.fbPrev->pixel(i + LEDS_PER_STRIP * 6),
                buffers.fbNext->pixel(i + LEDS_PER_STRIP * 6),
                buffers.lutCurrent, pResidual + LEDS_PER_STRIP * 3 * 6);
    
    
            o5.p6d = p6;
            o5.p6c = p6 >> 1;
            o5.p6b = p6 >> 2;
            o5.p6a = p6 >> 3;
            o4.p6d = p6 >> 4;
            o4.p6c = p6 >> 5;
            o4.p6b = p6 >> 6;
            o4.p6a = p6 >> 7;
            o3.p6d = p6 >> 8;
            o3.p6c = p6 >> 9;
            o3.p6b = p6 >> 10;
            o3.p6a = p6 >> 11;
            o2.p6d = p6 >> 12;
            o2.p6c = p6 >> 13;
            o2.p6b = p6 >> 14;
            o2.p6a = p6 >> 15;
            o1.p6d = p6 >> 16;
            o1.p6c = p6 >> 17;
            o1.p6b = p6 >> 18;
            o1.p6a = p6 >> 19;
            o0.p6d = p6 >> 20;
            o0.p6c = p6 >> 21;
            o0.p6b = p6 >> 22;
            o0.p6a = p6 >> 23;
    
    
            uint32_t p7 = updatePixel(icPrev, icNext,
                buffers.fbPrev->pixel(i + LEDS_PER_STRIP * 7),
                buffers.fbNext->pixel(i + LEDS_PER_STRIP * 7),
                buffers.lutCurrent, pResidual + LEDS_PER_STRIP * 3 * 7);
    
    
            o5.p7d = p7;
            o5.p7c = p7 >> 1;
            o5.p7b = p7 >> 2;
            o5.p7a = p7 >> 3;
            o4.p7d = p7 >> 4;
            o4.p7c = p7 >> 5;
            o4.p7b = p7 >> 6;
            o4.p7a = p7 >> 7;
            o3.p7d = p7 >> 8;
            o3.p7c = p7 >> 9;
            o3.p7b = p7 >> 10;
            o3.p7a = p7 >> 11;
            o2.p7d = p7 >> 12;
            o2.p7c = p7 >> 13;
            o2.p7b = p7 >> 14;
            o2.p7a = p7 >> 15;
            o1.p7d = p7 >> 16;
            o1.p7c = p7 >> 17;
            o1.p7b = p7 >> 18;
            o1.p7a = p7 >> 19;
            o0.p7d = p7 >> 20;
            o0.p7c = p7 >> 21;
            o0.p7b = p7 >> 22;
            o0.p7a = p7 >> 23;
    
            *(out++) = o0.word;
            *(out++) = o1.word;
            *(out++) = o2.word;
            *(out++) = o3.word;
            *(out++) = o4.word;
            *(out++) = o5.word;
    
    Micah Elizabeth Scott's avatar
    Micah Elizabeth Scott committed
    static void dfu_reboot()
    
    {
        // Reboot to the Fadecandy Bootloader
        boot_token = 0x74624346;
    
        // Short delay to allow the host to receive the response to DFU_DETACH.
        uint32_t deadline = millis() + 10;
        while (millis() < deadline) {
            watchdog_refresh();
        }
    
        // Detach from USB, and use the watchdog to time out a 10ms USB disconnect.
        __disable_irq();
        USB0_CONTROL = 0;
        while (1);
    }
    
    
        pinMode(LED_BUILTIN, OUTPUT);
    
        // Announce firmware version
        serial_begin(BAUD2DIV(115200));
        serial_print("Fadecandy v" DEVICE_VER_STRING "\r\n");
    
    
        // Application main loop
        while (usb_dfu_state == DFU_appIDLE) {
    
            buffers.handleUSB();
    
            updateDrawBuffer(calculateInterpCoefficient());
    
    
            // Optionally disable dithering by clearing our residual buffer every frame.
            if (buffers.flags & CFLAG_NO_DITHERING) {
    
                for (unsigned i = 0; i < CHANNELS_TOTAL; ++i)
                    residual[i] = 0;
    
    
        // Reboot into DFU bootloader
        dfu_reboot();