Newer
Older
/*
* Fadecandy Firmware
*
* Copyright (c) 2013 Micah Elizabeth Scott
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <math.h>
#include "OctoWS2811z.h"
#include "arm_math.h"
#include "fc_usb.h"
#include "fc_defs.h"
// USB data buffers
static fcBuffers buffers;
// Double-buffered DMA memory for raw bit planes of output
static DMAMEM int ledBuffer[LEDS_PER_STRIP * 12];
static OctoWS2811z leds(LEDS_PER_STRIP, ledBuffer, WS2811_800kHz);
// Residuals for temporal dithering
static int8_t residual[CHANNELS_TOTAL];
ALWAYS_INLINE static inline uint32_t lutInterpolate(const uint16_t *lut, uint32_t arg)
/*
* Using our color LUT for the indicated channel, convert the
* 16-bit intensity "arg" in our input colorspace to a corresponding
* 16-bit intensity in the device colorspace.
*/
unsigned index = arg >> 8;
unsigned alpha = arg & 0xFF;
unsigned invAlpha = 0x100 - alpha;
return (lut[index] * invAlpha + lut[index + 1] * alpha) >> 8;
static inline uint32_t updatePixel(uint32_t icPrev, uint32_t icNext, unsigned n)
{
/*
* Update pipeline for one pixel:
*
* 1. Interpolate framebuffer
* 2. Interpolate LUT
* 3. Dithering
*/
const uint8_t *pixelPrev = buffers.fbPrev->pixel(n);
const uint8_t *pixelNext = buffers.fbNext->pixel(n);
// Per-channel linear interpolation and conversion to 16-bit color.
int iR = (pixelPrev[0] * icPrev + pixelNext[0] * icNext) >> 16;
int iG = (pixelPrev[1] * icPrev + pixelNext[1] * icNext) >> 16;
int iB = (pixelPrev[2] * icPrev + pixelNext[2] * icNext) >> 16;
iR = lutInterpolate(&buffers.lutCurrent[0 * 256], iR);
iG = lutInterpolate(&buffers.lutCurrent[1 * 256], iG);
iB = lutInterpolate(&buffers.lutCurrent[2 * 256], iB);
// Pointer to the residual buffer for this pixel
int8_t *pResidual = &residual[n * 3];
// Incorporate the residual from last frame
iR += pResidual[0];
iG += pResidual[1];
iB += pResidual[2];
/*
* Round to the nearest 8-bit value. Clamping is necessary!
* This value might be as low as -128 prior to adding 0x80
* for rounding. After this addition, the result is guaranteed
* to be >= 0, but it may be over 0xffff.
*
* This rules out clamping using the UQADD16 instruction,
* since the addition itself needs to allow overflow. Instead,
* we clamp using a separate USAT instruction.
*/
int r8 = __USAT(iR + 0x80, 16) >> 8;
int g8 = __USAT(iG + 0x80, 16) >> 8;
int b8 = __USAT(iB + 0x80, 16) >> 8;
/*
* Compute the error, after expanding the 8-bit value back to 16-bit.
* Clamping (e.g. via __SSAT) is not necessary, since the error will not
* be greater than +/- 127.
*/
pResidual[0] = iR - (r8 * 257);
pResidual[1] = iG - (g8 * 257);
pResidual[2] = iB - (b8 * 257);
// Pack the result, in GRB order.
union {
uint32_t word;
struct {
uint32_t b:8, r:8, g:8, x:8;
};
} result;
// Pack using BFI instruction.
result.b = b8;
result.r = r8;
result.g = g8;
return result.word;
static void updateDrawBuffer(unsigned interpCoefficient)
{
/*
* Update the LED draw buffer. In one step, we do the interpolation,
* gamma correction, dithering, and we convert packed-pixel data to the
* planar format used for OctoWS2811 DMAs.
*
* "interpCoefficient" indicates how far between fbPrev and fbNext
* we are. It is a fixed point value in the range [0x0000, 0x10000],
* corresponding to 100% fbPrev and 100% fbNext, respectively.
*/
// For each pixel, this is a 24-byte stream of bits (6 words)
uint32_t *out = (uint32_t*) leds.getDrawBuffer();
// Interpolation coefficients, including a multiply by 257 to convert 8-bit color to 16-bit color.
uint32_t icPrev = 257 * (0x10000 - interpCoefficient);
uint32_t icNext = 257 * interpCoefficient;
for (int i = 0; i < LEDS_PER_STRIP; ++i) {
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
// Eight bit planes
union {
uint32_t word;
struct {
uint32_t x0:1, x1:1, x2:1, x3:1, x4:1, x5:1, x6:1, x7:1,
y0:1, y1:1, y2:1, y3:1, y4:1, y5:1, y6:1, y7:1,
z0:1, z1:1, z2:1, z3:1, z4:1, z5:1, z6:1, z7:1,
spare:8;
};
} p0, p1, p2, p3, p4, p5, p6, p7;
// Six output words
union {
uint32_t word;
struct {
uint32_t p0a:1, p1a:1, p2a:1, p3a:1, p4a:1, p5a:1, p6a:1, p7a:1,
p0b:1, p1b:1, p2b:1, p3b:1, p4b:1, p5b:1, p6b:1, p7b:1,
p0c:1, p1c:1, p2c:1, p3c:1, p4c:1, p5c:1, p6c:1, p7c:1,
p0d:1, p1d:1, p2d:1, p3d:1, p4d:1, p5d:1, p6d:1, p7d:1;
};
} o0, o1, o2, o3, o4, o5;
// Gather inputs
p0.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 0);
p1.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 1);
p2.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 2);
p3.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 3);
p4.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 4);
p5.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 5);
p6.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 6);
p7.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 7);
/*
* Remap bits.
* This generates fairly efficient code using the UBFX and BFI instructions.
*/
o0.p0a = p0.z7;
o0.p1a = p1.z7;
o0.p2a = p2.z7;
o0.p3a = p3.z7;
o0.p4a = p4.z7;
o0.p5a = p5.z7;
o0.p6a = p6.z7;
o0.p7a = p7.z7;
o0.p0b = p0.z6;
o0.p1b = p1.z6;
o0.p2b = p2.z6;
o0.p3b = p3.z6;
o0.p4b = p4.z6;
o0.p5b = p5.z6;
o0.p6b = p6.z6;
o0.p7b = p7.z6;
o0.p0c = p0.z5;
o0.p1c = p1.z5;
o0.p2c = p2.z5;
o0.p3c = p3.z5;
o0.p4c = p4.z5;
o0.p5c = p5.z5;
o0.p6c = p6.z5;
o0.p7c = p7.z5;
o0.p0d = p0.z4;
o0.p1d = p1.z4;
o0.p2d = p2.z4;
o0.p3d = p3.z4;
o0.p4d = p4.z4;
o0.p5d = p5.z4;
o0.p6d = p6.z4;
o0.p7d = p7.z4;
*(out++) = o0.word;
o1.p0a = p0.z3;
o1.p1a = p1.z3;
o1.p2a = p2.z3;
o1.p3a = p3.z3;
o1.p4a = p4.z3;
o1.p5a = p5.z3;
o1.p6a = p6.z3;
o1.p7a = p7.z3;
o1.p0b = p0.z2;
o1.p1b = p1.z2;
o1.p2b = p2.z2;
o1.p3b = p3.z2;
o1.p4b = p4.z2;
o1.p5b = p5.z2;
o1.p6b = p6.z2;
o1.p7b = p7.z2;
o1.p0c = p0.z1;
o1.p1c = p1.z1;
o1.p2c = p2.z1;
o1.p3c = p3.z1;
o1.p4c = p4.z1;
o1.p5c = p5.z1;
o1.p6c = p6.z1;
o1.p7c = p7.z1;
o1.p0d = p0.z0;
o1.p1d = p1.z0;
o1.p2d = p2.z0;
o1.p3d = p3.z0;
o1.p4d = p4.z0;
o1.p5d = p5.z0;
o1.p6d = p6.z0;
o1.p7d = p7.z0;
*(out++) = o1.word;
o2.p0a = p0.y7;
o2.p1a = p1.y7;
o2.p2a = p2.y7;
o2.p3a = p3.y7;
o2.p4a = p4.y7;
o2.p5a = p5.y7;
o2.p6a = p6.y7;
o2.p7a = p7.y7;
o2.p0b = p0.y6;
o2.p1b = p1.y6;
o2.p2b = p2.y6;
o2.p3b = p3.y6;
o2.p4b = p4.y6;
o2.p5b = p5.y6;
o2.p6b = p6.y6;
o2.p7b = p7.y6;
o2.p0c = p0.y5;
o2.p1c = p1.y5;
o2.p2c = p2.y5;
o2.p3c = p3.y5;
o2.p4c = p4.y5;
o2.p5c = p5.y5;
o2.p6c = p6.y5;
o2.p7c = p7.y5;
o2.p0d = p0.y4;
o2.p1d = p1.y4;
o2.p2d = p2.y4;
o2.p3d = p3.y4;
o2.p4d = p4.y4;
o2.p5d = p5.y4;
o2.p6d = p6.y4;
o2.p7d = p7.y4;
*(out++) = o2.word;
o3.p0a = p0.y3;
o3.p1a = p1.y3;
o3.p2a = p2.y3;
o3.p3a = p3.y3;
o3.p4a = p4.y3;
o3.p5a = p5.y3;
o3.p6a = p6.y3;
o3.p7a = p7.y3;
o3.p0b = p0.y2;
o3.p1b = p1.y2;
o3.p2b = p2.y2;
o3.p3b = p3.y2;
o3.p4b = p4.y2;
o3.p5b = p5.y2;
o3.p6b = p6.y2;
o3.p7b = p7.y2;
o3.p0c = p0.y1;
o3.p1c = p1.y1;
o3.p2c = p2.y1;
o3.p3c = p3.y1;
o3.p4c = p4.y1;
o3.p5c = p5.y1;
o3.p6c = p6.y1;
o3.p7c = p7.y1;
o3.p0d = p0.y0;
o3.p1d = p1.y0;
o3.p2d = p2.y0;
o3.p3d = p3.y0;
o3.p4d = p4.y0;
o3.p5d = p5.y0;
o3.p6d = p6.y0;
o3.p7d = p7.y0;
*(out++) = o3.word;
o4.p0a = p0.x7;
o4.p1a = p1.x7;
o4.p2a = p2.x7;
o4.p3a = p3.x7;
o4.p4a = p4.x7;
o4.p5a = p5.x7;
o4.p6a = p6.x7;
o4.p7a = p7.x7;
o4.p0b = p0.x6;
o4.p1b = p1.x6;
o4.p2b = p2.x6;
o4.p3b = p3.x6;
o4.p4b = p4.x6;
o4.p5b = p5.x6;
o4.p6b = p6.x6;
o4.p7b = p7.x6;
o4.p0c = p0.x5;
o4.p1c = p1.x5;
o4.p2c = p2.x5;
o4.p3c = p3.x5;
o4.p4c = p4.x5;
o4.p5c = p5.x5;
o4.p6c = p6.x5;
o4.p7c = p7.x5;
o4.p0d = p0.x4;
o4.p1d = p1.x4;
o4.p2d = p2.x4;
o4.p3d = p3.x4;
o4.p4d = p4.x4;
o4.p5d = p5.x4;
o4.p6d = p6.x4;
o4.p7d = p7.x4;
*(out++) = o4.word;
o5.p0a = p0.x3;
o5.p1a = p1.x3;
o5.p2a = p2.x3;
o5.p3a = p3.x3;
o5.p4a = p4.x3;
o5.p5a = p5.x3;
o5.p6a = p6.x3;
o5.p7a = p7.x3;
o5.p0b = p0.x2;
o5.p1b = p1.x2;
o5.p2b = p2.x2;
o5.p3b = p3.x2;
o5.p4b = p4.x2;
o5.p5b = p5.x2;
o5.p6b = p6.x2;
o5.p7b = p7.x2;
o5.p0c = p0.x1;
o5.p1c = p1.x1;
o5.p2c = p2.x1;
o5.p3c = p3.x1;
o5.p4c = p4.x1;
o5.p5c = p5.x1;
o5.p6c = p6.x1;
o5.p7c = p7.x1;
o5.p0d = p0.x0;
o5.p1d = p1.x0;
o5.p2d = p2.x0;
o5.p3d = p3.x0;
o5.p4d = p4.x0;
o5.p5d = p5.x0;
o5.p6d = p6.x0;
o5.p7d = p7.x0;
*(out++) = o5.word;
}
}
extern "C" int main()
{
leds.begin();
while (1) {
buffers.handleUSB();
updateDrawBuffer((millis() << 2) & 0xFFFF);
leds.show();
}
}