Newer
Older
* Simple ARM debug interface for Arduino, using the SWD (Serial Wire Debug) port.
*
* Copyright (c) 2013 Micah Elizabeth Scott
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "arm_debug.h"
bool ARMDebug::begin(unsigned clockPin, unsigned dataPin, LogLevel logLevel)
this->clockPin = clockPin;
this->dataPin = dataPin;
this->logLevel = logLevel;
fastPins = dataPin == ARMDEBUG_FAST_DATA_PIN && clockPin == ARMDEBUG_FAST_CLOCK_PIN;
pinMode(clockPin, OUTPUT);
pinMode(dataPin, INPUT_PULLUP);
// Invalidate cache
cache.select = 0xFFFFFFFF;
// Put the bus in a known state, and trigger a JTAG-to-SWD transition.
wireWriteTurnaround();
wireWrite(0xFFFFFFFF, 32);
wireWrite(0xFFFFFFFF, 32);
wireWrite(0xE79E, 16);
wireWrite(0xFFFFFFFF, 32);
wireWrite(0xFFFFFFFF, 32);
wireWrite(0, 32);
wireWrite(0, 32);
uint32_t idcode;
if (!getIDCODE(idcode))
return false;
log(LOG_NORMAL, "Found ARM processor debug port (IDCODE: %08x)", idcode);
if (!debugPortPowerup())
return false;
if (!debugPortReset())
return false;
if (!initMemPort())
return false;
return true;
}
bool ARMDebug::getIDCODE(uint32_t &idcode)
{
// Retrieve IDCODE
if (!dpRead(IDCODE, false, idcode)) {
log(LOG_ERROR, "No ARM processor detected. Check power and cables?");
return false;
}
// Verify debug port part number only. This isn't allowed to change, and it's a good early sanity check.
if ((idcode & 0x0FF00001) != 0x0ba00001) {
// For reference, the K20's IDCODE is 0x4ba00477 over JTAG vs. 0x2ba01477 over SWD.
log(LOG_ERROR, "ARM Debug Port has an incorrect part number (IDCODE: %08x)", idcode);
return false;
}
return true;
}
bool ARMDebug::debugPortPowerup()
{
// Initialize CTRL/STAT, request system and debugger power-up
if (!dpWrite(CTRLSTAT, false, CSYSPWRUPREQ | CDBGPWRUPREQ))
return false;
// Wait for power-up acknowledgment
uint32_t ctrlstat;
if (!dpReadPoll(CTRLSTAT, ctrlstat, CDBGPWRUPACK | CSYSPWRUPACK, -1)) {
log(LOG_ERROR, "ARMDebug: Debug port failed to power on (CTRLSTAT: %08x)", ctrlstat);
return false;
}
return true;
}
bool ARMDebug::debugPortReset()
{
// Reset the debug access port
if (!dpWrite(CTRLSTAT, false, CSYSPWRUPREQ | CDBGPWRUPREQ | CDBGRSTREQ))
return false;
// Wait for reset acknowledgment
uint32_t ctrlstat;
if (!dpReadPoll(CTRLSTAT, ctrlstat, CDBGPWRUPACK | CSYSPWRUPACK | CDBGRSTACK, -1)) {
log(LOG_ERROR, "ARMDebug: Debug port failed to reset (CTRLSTAT: %08x)", ctrlstat);
return false;
}
// Clear reset request bit (leave power requests on)
if (!dpWrite(CTRLSTAT, false, CSYSPWRUPREQ | CDBGPWRUPREQ))
return false;
return true;
}
bool ARMDebug::initMemPort()
{
// Make sure the default debug access port is an AHB (memory bus) port, like we expect
uint32_t idr;
if (!apRead(MEM_IDR, idr))
return false;
if ((idr & 0xF) != 1) {
log(LOG_ERROR, "ARMDebug: Default access port is not an AHB-AP as expected! (IDR: %08x)", idr);
return false;
}
// Invalidate CSW cache
cache.csw = -1;
return true;
}
bool ARMDebug::memWriteCSW(uint32_t data)
{
// Write to the MEM-AP CSW. Duplicate writes are ignored, and the cache is updated.
if (data == cache.csw)
return true;
if (!apWrite(MEM_CSW, data | CSW_DEFAULTS))
cache.csw = data;
bool ARMDebug::memWait()
{
// Wait for a transaction to complete & the port to be enabled.
uint32_t csw;
if (!apReadPoll(MEM_CSW, csw, CSW_TRIN_PROG | CSW_DEVICE_EN, CSW_DEVICE_EN)) {
log(LOG_ERROR, "ARMDebug: Error while waiting for memory port");
return false;
}
return true;
}
bool ARMDebug::memStore(uint32_t addr, uint32_t data)
bool ARMDebug::memLoad(uint32_t addr, uint32_t &data)
bool ARMDebug::memStoreAndVerify(uint32_t addr, uint32_t data)
{
return memStoreAndVerify(addr, &data, 1);
}
bool ARMDebug::memStoreAndVerify(uint32_t addr, const uint32_t *data, unsigned count)
{
if (!memStore(addr, data, count))
return false;
if (!memWait())
return false;
if (!apWrite(MEM_TAR, addr))
return false;
while (count) {
uint32_t readback;
if (!memWait())
return false;
if (!apRead(MEM_DRW, readback))
return false;
log(readback == *data ? LOG_TRACE_MEM : LOG_ERROR,
"MEM Verif [%08x] %08x (expected %08x)", addr, readback, *data);
if (readback != *data)
return false;
data++;
addr++;
count--;
}
return true;
}
bool ARMDebug::memStore(uint32_t addr, const uint32_t *data, unsigned count)
if (!memWait())
return false;
if (!memWriteCSW(CSW_32BIT | CSW_ADDRINC_SINGLE))
return false;
if (!apWrite(MEM_TAR, addr))
log(LOG_TRACE_MEM, "MEM Store [%08x] %08x", addr, *data);
if (!memWait())
return false;
if (!apWrite(MEM_DRW, *data))
bool ARMDebug::memLoad(uint32_t addr, uint32_t *data, unsigned count)
if (!memWait())
return false;
if (!memWriteCSW(CSW_32BIT | CSW_ADDRINC_SINGLE))
return false;
if (!apWrite(MEM_TAR, addr))
if (!memWait())
return false;
if (!apRead(MEM_DRW, *data))
log(LOG_TRACE_MEM, "MEM Load [%08x] %08x", addr, *data);
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
bool ARMDebug::memStoreByte(uint32_t addr, uint8_t data)
{
if (!memWait())
return false;
if (!memWriteCSW(CSW_8BIT))
return false;
if (!apWrite(MEM_TAR, addr))
return false;
log(LOG_TRACE_MEM, "MEM Store [%08x] %02x", addr, data);
// Replicate across lanes
uint32_t word = data | (data << 8) | (data << 16) | (data << 24);
return apWrite(MEM_DRW, word);
}
bool ARMDebug::memLoadByte(uint32_t addr, uint8_t &data)
{
uint32_t word;
if (!memWait())
return false;
if (!memWriteCSW(CSW_8BIT))
return false;
if (!apWrite(MEM_TAR, addr))
return false;
if (!apRead(MEM_DRW, word))
return false;
// Select the proper lane
data = word >> ((addr & 3) << 3);
log(LOG_TRACE_MEM, "MEM Load [%08x] %02x", addr, data);
return true;
}
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
bool ARMDebug::memStoreHalf(uint32_t addr, uint16_t data)
{
if (!memWait())
return false;
if (!memWriteCSW(CSW_16BIT))
return false;
if (!apWrite(MEM_TAR, addr))
return false;
log(LOG_TRACE_MEM, "MEM Store [%08x] %04x", addr, data);
// Replicate across lanes
uint32_t word = data | (data << 16);
return apWrite(MEM_DRW, word);
}
bool ARMDebug::memLoadHalf(uint32_t addr, uint16_t &data)
{
uint32_t word;
if (!memWait())
return false;
if (!memWriteCSW(CSW_16BIT))
return false;
if (!apWrite(MEM_TAR, addr))
return false;
if (!apRead(MEM_DRW, word))
return false;
// Select the proper lane
data = word >> ((addr & 2) << 3);
log(LOG_TRACE_MEM, "MEM Load [%08x] %04x", addr, data);
return true;
}
bool ARMDebug::apWrite(unsigned addr, uint32_t data)
log(LOG_TRACE_AP, "AP Write [%x] %08x", addr, data);
return dpSelect(addr) && dpWrite(addr, true, data);
bool ARMDebug::apRead(unsigned addr, uint32_t &data)
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/*
* This is really hard to find in the docs, but AP reads are delayed by one transaction.
* So, the very first AP read will return undefined data, the next AP read returns the
* data for the previous address, and so on.
*
* See:
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0314h/ch02s04s03.html
*
* To make this easier to deal with, we issue a real AP read followed by a dummy read.
* The first read will give us the previous dummy result, the second read to a dummy
* address will give us the data we care about.
*
* Performance for this will be kinda sucky, but so far I don't care.
*/
unsigned dummyAddr = MEM_IDR; // Something with no side effects
uint32_t dummyData;
bool result = dpSelect(addr) && dpRead(addr, true, dummyData) &&
dpSelect(dummyAddr) && dpRead(dummyAddr, true, data);
if (result) {
log(LOG_TRACE_AP, "AP Read [%x] %08x", addr, data);
}
return result;
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
}
bool ARMDebug::dpReadPoll(unsigned addr, uint32_t &data, uint32_t mask, uint32_t expected, unsigned retries)
{
expected &= mask;
do {
if (!dpRead(addr, false, data))
return false;
if ((data & mask) == expected)
return true;
} while (retries--);
log(LOG_ERROR, "ARMDebug: Timed out while polling DP ([%08x] & %08x == %08x). Current value: %08x",
addr, mask, expected, data);
return false;
}
bool ARMDebug::apReadPoll(unsigned addr, uint32_t &data, uint32_t mask, uint32_t expected, unsigned retries)
{
expected &= mask;
do {
if (!apRead(addr, data))
return false;
if ((data & mask) == expected)
return true;
} while (retries--);
log(LOG_ERROR, "ARMDebug: Timed out while polling AP ([%08x] & %08x == %08x). Current value: %08x",
addr, mask, expected, data);
return false;
}
bool ARMDebug::memPoll(unsigned addr, uint32_t &data, uint32_t mask, uint32_t expected, unsigned retries)
{
expected &= mask;
do {
if (!memLoad(addr, data))
return false;
if ((data & mask) == expected)
return true;
} while (retries--);
log(LOG_ERROR, "ARMDebug: Timed out while polling MEM ([%08x] & %08x == %08x). Current value: %08x",
addr, mask, expected, data);
return false;
bool ARMDebug::dpSelect(unsigned addr)
* Select a new access port and/or a bank. Uses only the high byte and
* second nybble of 'addr'. This is cached, so redundant dpSelect()s have no effect.
uint32_t select = addr & 0xFF0000F0;
if (select != cache.select) {
if (!dpWrite(SELECT, false, select))
return false;
cache.select = select;
}
return true;
bool ARMDebug::dpWrite(unsigned addr, bool APnDP, uint32_t data)
log(LOG_TRACE_DP, "DP Write [%x:%x] %08x", addr, APnDP, data);
do {
wireWrite(packHeader(addr, APnDP, false), 8);
wireReadTurnaround();
ack = wireRead(3);
wireWriteTurnaround();
switch (ack) {
case 1: // Success
wireWrite(data, 32);
wireWrite(evenParity(data), 1);
wireWriteIdle();
log(LOG_TRACE_DP, "DP WAIT response, %d retries left", retries);
retries--;
break;
case 4: // FAULT
log(LOG_ERROR, "FAULT response during write (addr=%x APnDP=%d data=%08x)",
addr, APnDP, data);
if (!handleFault())
log(LOG_ERROR, "Error during fault recovery!");
log(LOG_ERROR, "PROTOCOL ERROR response during write (ack=%x addr=%x APnDP=%d data=%08x)",
ack, addr, APnDP, data);
return false;
}
} while (retries--);
log(LOG_ERROR, "WAIT timeout during write (addr=%x APnDP=%d data=%08x)",
addr, APnDP, data);
return false;
bool ARMDebug::dpRead(unsigned addr, bool APnDP, uint32_t &data)
unsigned retries = 10;
unsigned ack;
do {
wireWrite(packHeader(addr, APnDP, true), 8);
wireReadTurnaround();
ack = wireRead(3);
switch (ack) {
case 1: // Success
data = wireRead(32);
if (wireRead(1) != evenParity(data)) {
wireWriteTurnaround();
log(LOG_ERROR, "PARITY ERROR during read (addr=%x APnDP=%d data=%08x)",
addr, APnDP, data);
return false;
}
wireWriteTurnaround();
wireWriteIdle();
log(LOG_TRACE_DP, "DP Read [%x:%x] %08x", addr, APnDP, data);
return true;
case 2: // WAIT
wireWriteTurnaround();
wireWriteIdle();
log(LOG_TRACE_DP, "DP WAIT response, %d retries left", retries);
retries--;
break;
case 4: // FAULT
wireWriteTurnaround();
log(LOG_ERROR, "FAULT response during read (addr=%x APnDP=%d)", addr, APnDP);
if (!handleFault())
log(LOG_ERROR, "Error during fault recovery!");
return false;
default:
wireWriteTurnaround();
log(LOG_ERROR, "PROTOCOL ERROR response during read (ack=%x addr=%x APnDP=%d)", ack, addr, APnDP);
return false;
}
} while (retries--);
log(LOG_ERROR, "WAIT timeout during read (addr=%x APnDP=%d)", addr, APnDP);
return false;
bool ARMDebug::handleFault()
{
// Read CTRLSTAT to see what the fault was, and set appropriate ABORT bits
uint32_t ctrlstat;
uint32_t abortbits = 0;
bool dumpRegs = false;
if (!dpRead(CTRLSTAT, false, ctrlstat))
return false;
if (ctrlstat & (1 << 7)) {
log(LOG_ERROR, "FAULT: Detected WDATAERR");
abortbits |= 1 << 3;
}
if (ctrlstat & (1 << 4)) {
log(LOG_ERROR, "FAULT: Detected STICKCMP");
abortbits |= 1 << 1;
}
if (ctrlstat & (1 << 1)) {
log(LOG_ERROR, "FAULT: Detected STICKORUN");
abortbits |= 1 << 4;
}
if (ctrlstat & (1 << 5)) {
log(LOG_ERROR, "FAULT: Detected STICKYERR");
abortbits |= 1 << 2;
dumpRegs = true;
}
if (abortbits && !dpWrite(ABORT, false, abortbits))
return false;
if (dumpRegs && !dumpMemPortRegisters()) {
log(LOG_ERROR, "Failed to dump memory port registers for diagnostics.");
return false;
}
return true;
}
bool ARMDebug::dumpMemPortRegisters()
{
uint32_t reg;
if (!apRead(MEM_IDR, reg)) return false;
log(LOG_ERROR, " IDR = %08x", reg);
if (!apRead(MEM_CSW, reg)) return false;
log(LOG_ERROR, " CSW = %08x", reg);
if (!apRead(MEM_TAR, reg)) return false;
log(LOG_ERROR, " TAR = %08x", reg);
uint8_t ARMDebug::packHeader(unsigned addr, bool APnDP, bool RnW)
{
bool a2 = (addr >> 2) & 1;
bool a3 = (addr >> 3) & 1;
bool parity = APnDP ^ RnW ^ a2 ^ a3;
return (1 << 0) | // Start
(APnDP << 1) |
(RnW << 2) |
((addr & 0xC) << 1) |
(parity << 5) |
(1 << 7) ; // Park
word = (word & 0xFFFF) ^ (word >> 16);
word = (word & 0xFF) ^ (word >> 8);
word = (word & 0xF) ^ (word >> 4);
word = (word & 0x3) ^ (word >> 2);
word = (word & 0x1) ^ (word >> 1);
return word;
void ARMDebug::wireWrite(uint32_t data, unsigned nBits)
log(LOG_TRACE_SWD, "SWD Write %08x (%d)", data, nBits);
if (fastPins) {
// Fast path
while (nBits--) {
digitalWriteFast(ARMDEBUG_FAST_DATA_PIN, data & 1);
digitalWriteFast(ARMDEBUG_FAST_CLOCK_PIN, LOW);
data >>= 1;
digitalWriteFast(ARMDEBUG_FAST_CLOCK_PIN, HIGH);
}
} else {
// Slow (generic) path
while (nBits--) {
digitalWrite(dataPin, data & 1);
digitalWrite(clockPin, LOW);
data >>= 1;
digitalWrite(clockPin, HIGH);
}
void ARMDebug::wireWriteIdle()
{
// Minimum 8 clock cycles.
wireWrite(0, 32);
}
uint32_t result = 0;
uint32_t mask = 1;
unsigned count = nBits;
if (fastPins) {
// Fast path
while (count--) {
if (digitalReadFast(ARMDEBUG_FAST_DATA_PIN)) {
result |= mask;
}
digitalWriteFast(ARMDEBUG_FAST_CLOCK_PIN, LOW);
mask <<= 1;
digitalWriteFast(ARMDEBUG_FAST_CLOCK_PIN, HIGH);
}
} else {
// Slow (generic) path
while (count--) {
if (digitalRead(dataPin)) {
result |= mask;
}
digitalWrite(clockPin, LOW);
mask <<= 1;
digitalWrite(clockPin, HIGH);
log(LOG_TRACE_SWD, "SWD Read %08x (%d)", result, nBits);
log(LOG_TRACE_SWD, "SWD Write trn");
if (fastPins) {
// Fast path
digitalWriteFast(ARMDEBUG_FAST_DATA_PIN, HIGH);
pinMode(ARMDEBUG_FAST_DATA_PIN, INPUT_PULLUP);
digitalWriteFast(ARMDEBUG_FAST_CLOCK_PIN, LOW);
digitalWriteFast(ARMDEBUG_FAST_CLOCK_PIN, HIGH);
pinMode(ARMDEBUG_FAST_DATA_PIN, OUTPUT);
} else {
// Slow (generic) path
digitalWrite(dataPin, HIGH);
pinMode(dataPin, INPUT_PULLUP);
digitalWrite(clockPin, LOW);
digitalWrite(clockPin, HIGH);
pinMode(dataPin, OUTPUT);
}
log(LOG_TRACE_SWD, "SWD Read trn");
if (fastPins) {
// Fast path
digitalWriteFast(ARMDEBUG_FAST_DATA_PIN, HIGH);
pinMode(ARMDEBUG_FAST_DATA_PIN, INPUT_PULLUP);
digitalWriteFast(ARMDEBUG_FAST_CLOCK_PIN, LOW);
digitalWriteFast(ARMDEBUG_FAST_CLOCK_PIN, HIGH);
} else {
// Slow (generic) path
digitalWrite(dataPin, HIGH);
pinMode(dataPin, INPUT_PULLUP);
digitalWrite(clockPin, LOW);
digitalWrite(clockPin, HIGH);
}
void ARMDebug::log(int level, const char *fmt, ...)
if (level <= logLevel && Serial) {
va_list ap;
char buffer[256];
va_start(ap, fmt);
int ret = vsnprintf(buffer, sizeof buffer, fmt, ap);
va_end(ap);
void ARMDebug::hexDump(uint32_t addr, unsigned count, int level)
{
// Hex dump target memory to the log
if (level <= logLevel && Serial) {
va_list ap;
char buffer[32];
LogLevel oldLogLevel;
setLogLevel(LOG_NONE, oldLogLevel);
while (count) {
snprintf(buffer, sizeof buffer, "%08x:", addr);
Serial.print(buffer);
for (unsigned x = 0; count && x < 4; x++) {
uint32_t word;
if (memLoad(addr, word)) {
snprintf(buffer, sizeof buffer, " %08x", word);
Serial.print(buffer);
} else {
Serial.print(" (error )");
}
count--;
}
Serial.println();
}
setLogLevel(oldLogLevel);
}
}