Skip to content
Snippets Groups Projects
usb_dev.c 24.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* 
     * Fadecandy firmware
     * Copyright (c) 2013 Micah Elizabeth Scott
     *
     * Teensyduino Core Library
    
     * http://www.pjrc.com/teensy/
     * Copyright (c) 2013 PJRC.COM, LLC.
     *
     * Permission is hereby granted, free of charge, to any person obtaining
     * a copy of this software and associated documentation files (the
     * "Software"), to deal in the Software without restriction, including
     * without limitation the rights to use, copy, modify, merge, publish,
     * distribute, sublicense, and/or sell copies of the Software, and to
     * permit persons to whom the Software is furnished to do so, subject to
     * the following conditions:
     *
     * 1. The above copyright notice and this permission notice shall be 
     * included in all copies or substantial portions of the Software.
     *
     * 2. If the Software is incorporated into a build system that allows 
     * selection among a list of target devices, then similar target
     * devices manufactured by PJRC.COM must be included in the list of
     * target devices and selectable in the same manner.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     * SOFTWARE.
     */
    
    #include "mk20dx128.h"
    #include "usb_dev.h"
    #include "usb_mem.h"
    
    
    // buffer descriptor table
    
    typedef struct {
    
        uint32_t desc;
        void * addr;
    
    } bdt_t;
    
    __attribute__ ((section(".usbdescriptortable"), used))
    static bdt_t table[(NUM_ENDPOINTS+1)*4];
    
    static usb_packet_t *rx_first[NUM_ENDPOINTS];
    static usb_packet_t *rx_last[NUM_ENDPOINTS];
    static usb_packet_t *tx_first[NUM_ENDPOINTS];
    static usb_packet_t *tx_last[NUM_ENDPOINTS];
    uint16_t usb_rx_byte_count_data[NUM_ENDPOINTS];
    
    
    static uint8_t reply_buffer[8];
    
    
    // Performance counters
    volatile uint32_t perf_frameCounter;
    
    
    static uint8_t tx_state[NUM_ENDPOINTS];
    
    #define TX_STATE_BOTH_FREE_EVEN_FIRST   0
    #define TX_STATE_BOTH_FREE_ODD_FIRST    1
    #define TX_STATE_EVEN_FREE      2
    #define TX_STATE_ODD_FREE       3
    #define TX_STATE_NONE_FREE_EVEN_FIRST   4
    #define TX_STATE_NONE_FREE_ODD_FIRST    5
    
    #define BDT_OWN     0x80
    #define BDT_DATA1   0x40
    #define BDT_DATA0   0x00
    #define BDT_DTS     0x08
    #define BDT_STALL   0x04
    #define BDT_PID(n)  (((n) >> 2) & 15)
    
    #define BDT_DESC(count, data)   (BDT_OWN | BDT_DTS \
                    | ((data) ? BDT_DATA1 : BDT_DATA0) \
                    | ((count) << 16))
    
    
    #define TX   1
    #define RX   0
    #define ODD  1
    #define EVEN 0
    #define DATA0 0
    #define DATA1 1
    #define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
    #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
    
    
    static union {
     struct {
      union {
       struct {
    
        uint8_t bmRequestType;
        uint8_t bRequest;
    
        uint16_t wRequestAndType;
    
        uint16_t wValue;
        uint16_t wIndex;
        uint16_t wLength;
    
        uint32_t word1;
        uint32_t word2;
    
    #define GET_STATUS      0
    #define CLEAR_FEATURE       1
    #define SET_FEATURE     3
    #define SET_ADDRESS     5
    #define GET_DESCRIPTOR      6
    #define SET_DESCRIPTOR      7
    #define GET_CONFIGURATION   8
    #define SET_CONFIGURATION   9
    #define GET_INTERFACE       10
    #define SET_INTERFACE       11
    #define SYNCH_FRAME     12
    
    
    // SETUP always uses a DATA0 PID for the data field of the SETUP transaction.
    // transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1)
    // Status stage uses a DATA1 PID.
    
    static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
    static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
    
    static uint8_t ep0_tx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
    static uint8_t ep0_tx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
    
    static const uint8_t *ep0_tx_ptr = NULL;
    static uint16_t ep0_tx_len;
    static uint8_t ep0_tx_bdt_bank = 0;
    static uint8_t ep0_tx_data_toggle = 0;
    uint8_t usb_rx_memory_needed = 0;
    
    volatile uint8_t usb_configuration = 0;
    
    volatile uint8_t usb_dfu_state = DFU_appIDLE;
    
    
    static void endpoint0_stall(void)
    {
    
        USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
    
    }
    
    
    static void endpoint0_transmit(const void *data, uint32_t len)
    {
    
        // Use a local transmit buffer pair in RAM, and copy in the source data (usually decriptors).
        // We can't reliably serve USB data from flash apparently, and this is a little more RAM
        // efficient than keeping all descriptors in RAM.
    
        uint8_t *buffer = ep0_tx_bdt_bank ? ep0_tx1_buf : ep0_tx0_buf;
        uint32_t count = len;
        while (count--) {
            *buffer = *(const uint8_t*)data;
            data++;
            buffer++;
        }
    
    
        table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle);
    
        ep0_tx_data_toggle ^= 1;
        ep0_tx_bdt_bank ^= 1;
    
    }
    
    static void usb_setup(void)
    {
    
        const uint8_t *data = NULL;
        uint32_t datalen = 0;
        const usb_descriptor_list_t *list;
        uint32_t size;
        volatile uint8_t *reg;
        uint8_t epconf;
        const uint8_t *cfg;
        int i;
    
        switch (setup.wRequestAndType) {
          case 0x0500: // SET_ADDRESS
            break;
          case 0x0900: // SET_CONFIGURATION
            usb_configuration = setup.wValue;
            reg = &USB0_ENDPT1;
            cfg = usb_endpoint_config_table;
            // clear all BDT entries, free any allocated memory...
            for (i=4; i <= NUM_ENDPOINTS*4; i++) {
                if (table[i].desc & BDT_OWN) {
                    usb_free((usb_packet_t *)((uint8_t *)(table[i].addr) - 8));
                }
            }
            // free all queued packets
            for (i=0; i < NUM_ENDPOINTS; i++) {
                usb_packet_t *p, *n;
                p = rx_first[i];
                while (p) {
                    n = p->next;
                    usb_free(p);
                    p = n;
                }
                rx_first[i] = NULL;
                rx_last[i] = NULL;
                p = tx_first[i];
                while (p) {
                    n = p->next;
                    usb_free(p);
                    p = n;
                }
                tx_first[i] = NULL;
                tx_last[i] = NULL;
                usb_rx_byte_count_data[i] = 0;
                switch (tx_state[i]) {
                  case TX_STATE_EVEN_FREE:
                  case TX_STATE_NONE_FREE_EVEN_FIRST:
                    tx_state[i] = TX_STATE_BOTH_FREE_EVEN_FIRST;
                    break;
                  case TX_STATE_ODD_FREE:
                  case TX_STATE_NONE_FREE_ODD_FIRST:
                    tx_state[i] = TX_STATE_BOTH_FREE_ODD_FIRST;
                    break;
                  default:
                    break;
                }
            }
            usb_rx_memory_needed = 0;
            for (i=1; i <= NUM_ENDPOINTS; i++) {
                epconf = *cfg++;
                *reg = epconf;
                reg += 4;
                if (epconf & USB_ENDPT_EPRXEN) {
                    usb_packet_t *p;
                    p = usb_malloc();
                    if (p) {
                        table[index(i, RX, EVEN)].addr = p->buf;
                        table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
                    } else {
                        table[index(i, RX, EVEN)].desc = 0;
                        usb_rx_memory_needed++;
                    }
                    p = usb_malloc();
                    if (p) {
                        table[index(i, RX, ODD)].addr = p->buf;
                        table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
                    } else {
                        table[index(i, RX, ODD)].desc = 0;
                        usb_rx_memory_needed++;
                    }
                }
                table[index(i, TX, EVEN)].desc = 0;
                table[index(i, TX, ODD)].desc = 0;
            }
            break;
          case 0x0880: // GET_CONFIGURATION
            reply_buffer[0] = usb_configuration;
            datalen = 1;
            data = reply_buffer;
            break;
          case 0x0080: // GET_STATUS (device)
            reply_buffer[0] = 0;
            reply_buffer[1] = 0;
            datalen = 2;
            data = reply_buffer;
            break;
          case 0x0082: // GET_STATUS (endpoint)
            if (setup.wIndex > NUM_ENDPOINTS) {
                endpoint0_stall();
                return;
            }
            reply_buffer[0] = 0;
            reply_buffer[1] = 0;
            if (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02) reply_buffer[0] = 1;
            data = reply_buffer;
            datalen = 2;
            break;
          case 0x0102: // CLEAR_FEATURE (endpoint)
            i = setup.wIndex & 0x7F;
            if (i > NUM_ENDPOINTS || setup.wValue != 0) {
                endpoint0_stall();
                return;
            }
            (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) &= ~0x02;
            break;
          case 0x0302: // SET_FEATURE (endpoint)
            i = setup.wIndex & 0x7F;
            if (i > NUM_ENDPOINTS || setup.wValue != 0) {
                endpoint0_stall();
                return;
            }
            (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) |= 0x02;
            break;
          case 0x0680: // GET_DESCRIPTOR
          case 0x0681:
            for (list = usb_descriptor_list; 1; list++) {
                if (list->addr == NULL) break;
    
                if (setup.wValue == list->wValue) {
    
                    data = list->addr;
                    if ((setup.wValue >> 8) == 3) {
                        // for string descriptors, use the descriptor's
                        // length field, allowing runtime configured
                        // length.
                        datalen = *(list->addr);
                    } else {
                        datalen = list->length;
                    }
                    goto send;
                }
            }
            endpoint0_stall();
            return;
    
          case 0x01C0:      // Read frame counter
          case 0x01C1:
            data = (uint8_t*) &perf_frameCounter;
            datalen = sizeof perf_frameCounter;
            break;
    
    
          case (MSFT_VENDOR_CODE << 8) | 0xC0:      // Get Microsoft descriptor
    
          case (MSFT_VENDOR_CODE << 8) | 0xC1:
    
            if (setup.wIndex == 0x0004) {
                // Return WCID descriptor
                data = usb_microsoft_wcid;
    
                datalen = usb_microsoft_wcid[0];
    
            } else if (setup.wIndex == 0x0005) {
                // Return Extended Properties descriptor
                data = usb_microsoft_extprop;
                datalen = usb_microsoft_extprop[0];
                break;
            } 
    
            endpoint0_stall();
            return;
    
    
          case 0x03a1: // DFU_GETSTATUS
            if (setup.wIndex != DFU_INTERFACE) {
                endpoint0_stall();
                return;
            }
            reply_buffer[0] = 0;    // bStatus = OK
            reply_buffer[1] = 1;    // bwPollTimeout LSB = 1
            reply_buffer[2] = 0;    // bwPollTimeout
            reply_buffer[3] = 0;    // bwPollTimeout
            reply_buffer[4] = usb_dfu_state;
            reply_buffer[5] = 0;    // iString = 0
            data = reply_buffer;
            datalen = 6;
            break;
    
          case 0x05a1: // DFU_GETSTATE
            if (setup.wIndex != DFU_INTERFACE) {
                endpoint0_stall();
                return;
            }
            reply_buffer[0] = usb_dfu_state;
            data = reply_buffer;
            datalen = 1;
            break;
    
          case 0x0021: // DFU_DETACH
            if (setup.wIndex != DFU_INTERFACE) {
                endpoint0_stall();
                return;
            }
            usb_dfu_state = DFU_appDETACH;
            break;
    
    
          default:
            endpoint0_stall();
            return;
        }
    
    
        if (datalen > setup.wLength) datalen = setup.wLength;
        size = datalen;
        if (size > EP0_SIZE) size = EP0_SIZE;
        endpoint0_transmit(data, size);
        data += size;
        datalen -= size;
        if (datalen == 0 && size < EP0_SIZE) return;
    
        size = datalen;
        if (size > EP0_SIZE) size = EP0_SIZE;
        endpoint0_transmit(data, size);
        data += size;
        datalen -= size;
        if (datalen == 0 && size < EP0_SIZE) return;
    
        ep0_tx_ptr = data;
        ep0_tx_len = datalen;
    
    }
    
    
    
    //A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint
    //experiences any configuration event (configuration events are explained in
    //Sections 9.1.1.5 and 9.4.5).
    
    //Configuring a device or changing an alternate setting causes all of the status
    //and configuration values associated with endpoints in the affected interfaces
    //to be set to their default values. This includes setting the data toggle of
    //any endpoint using data toggles to the value DATA0.
    
    //For endpoints using data toggle, regardless of whether an endpoint has the
    //Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the
    //data toggle being reinitialized to DATA0.
    
    
    
    // #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
    
    static void usb_control(uint32_t stat)
    {
    
        bdt_t *b;
        uint32_t pid, size;
        uint8_t *buf;
        const uint8_t *data;
    
        b = stat2bufferdescriptor(stat);
        pid = BDT_PID(b->desc);
        buf = b->addr;
    
        switch (pid) {
        case 0x0D: // Setup received from host
            // grab the 8 byte setup info
            setup.word1 = *(uint32_t *)(buf);
            setup.word2 = *(uint32_t *)(buf + 4);
    
            // give the buffer back
            b->desc = BDT_DESC(EP0_SIZE, DATA1);
    
            // clear any leftover pending IN transactions
            ep0_tx_ptr = NULL;
    
            // first IN after Setup is always DATA1
            ep0_tx_data_toggle = 1;
    
            // actually "do" the setup request
            usb_setup();
            // unfreeze the USB, now that we're ready
            USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
            break;
    
        case 0x01:  // OUT transaction received from host
            // give the buffer back
            b->desc = BDT_DESC(EP0_SIZE, DATA1);
            break;
    
        case 0x09: // IN transaction completed to host
            // send remaining data, if any...
            data = ep0_tx_ptr;
            if (data) {
                size = ep0_tx_len;
                if (size > EP0_SIZE) size = EP0_SIZE;
                endpoint0_transmit(data, size);
                data += size;
                ep0_tx_len -= size;
                ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL;
            }
    
            if (setup.bRequest == 5 && setup.bmRequestType == 0) {
                setup.bRequest = 0;
                USB0_ADDR = setup.wValue;
            }
    
            break;
        }
        USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
    
    }
    
    
    usb_packet_t *usb_rx(uint32_t endpoint)
    {
    
        usb_packet_t *ret;
        endpoint--;
        if (endpoint >= NUM_ENDPOINTS) return NULL;
        __disable_irq();
        ret = rx_first[endpoint];
        if (ret) rx_first[endpoint] = ret->next;
        usb_rx_byte_count_data[endpoint] -= ret->len;
        __enable_irq();
        return ret;
    
    }
    
    static uint32_t usb_queue_byte_count(const usb_packet_t *p)
    {
    
        uint32_t count=0;
    
        __disable_irq();
        for ( ; p; p = p->next) {
            count += p->len;
        }
        __enable_irq();
        return count;
    
    }
    
    // TODO: make this an inline function...
    /*
    uint32_t usb_rx_byte_count(uint32_t endpoint)
    {
    
        endpoint--;
        if (endpoint >= NUM_ENDPOINTS) return 0;
        return usb_rx_byte_count_data[endpoint];
        //return usb_queue_byte_count(rx_first[endpoint]);
    
    }
    */
    
    uint32_t usb_tx_byte_count(uint32_t endpoint)
    {
    
        endpoint--;
        if (endpoint >= NUM_ENDPOINTS) return 0;
        return usb_queue_byte_count(tx_first[endpoint]);
    
    }
    
    uint32_t usb_tx_packet_count(uint32_t endpoint)
    {
    
        const usb_packet_t *p;
        uint32_t count=0;
    
        endpoint--;
        if (endpoint >= NUM_ENDPOINTS) return 0;
        p = tx_first[endpoint];
        __disable_irq();
        for ( ; p; p = p->next) count++;
        __enable_irq();
        return count;
    
    }
    
    
    // Called from usb_free, but only when usb_rx_memory_needed > 0, indicating
    // receive endpoints are starving for memory.  The intention is to give
    // endpoints needing receive memory priority over the user's code, which is
    // likely calling usb_malloc to obtain memory for transmitting.  When the
    // user is creating data very quickly, their consumption could starve reception
    // without this prioritization.  The packet buffer (input) is assigned to the
    // first endpoint needing memory.
    //
    void usb_rx_memory(usb_packet_t *packet)
    {
    
        unsigned int i;
        const uint8_t *cfg;
    
        cfg = usb_endpoint_config_table;
        __disable_irq();
        for (i=1; i <= NUM_ENDPOINTS; i++) {
            if (*cfg++ & USB_ENDPT_EPRXEN) {
                if (table[index(i, RX, EVEN)].desc == 0) {
                    table[index(i, RX, EVEN)].addr = packet->buf;
                    table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
                    usb_rx_memory_needed--;
                    __enable_irq();
                    return;
                }
                if (table[index(i, RX, ODD)].desc == 0) {
                    table[index(i, RX, ODD)].addr = packet->buf;
                    table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
                    usb_rx_memory_needed--;
                    __enable_irq();
                    return;
                }
            }
        }
        __enable_irq();
    
        // we should never reach this point.  If we get here, it means
        // usb_rx_memory_needed was set greater than zero, but no memory
        // was actually needed.  
        usb_rx_memory_needed = 0;
        usb_free(packet);
        return;
    
    }
    
    //#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
    //#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
    
    void usb_tx(uint32_t endpoint, usb_packet_t *packet)
    {
    
        bdt_t *b = &table[index(endpoint, TX, EVEN)];
        uint8_t next;
    
        endpoint--;
        if (endpoint >= NUM_ENDPOINTS) return;
        __disable_irq();
    
        switch (tx_state[endpoint]) {
          case TX_STATE_BOTH_FREE_EVEN_FIRST:
            next = TX_STATE_ODD_FREE;
            break;
          case TX_STATE_BOTH_FREE_ODD_FIRST:
            b++;
            next = TX_STATE_EVEN_FREE;
            break;
          case TX_STATE_EVEN_FREE:
            next = TX_STATE_NONE_FREE_ODD_FIRST;
            break;
          case TX_STATE_ODD_FREE:
            b++;
            next = TX_STATE_NONE_FREE_EVEN_FIRST;
            break;
          default:
            if (tx_first[endpoint] == NULL) {
                tx_first[endpoint] = packet;
            } else {
                tx_last[endpoint]->next = packet;
            }
            tx_last[endpoint] = packet;
            __enable_irq();
            return;
        }
        tx_state[endpoint] = next;
        b->addr = packet->buf;
        b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
        __enable_irq();
    
        status = USB0_ISTAT;
    
        if ((status & USB_INTEN_SOFTOKEN /* 04 */ )) {
            USB0_ISTAT = USB_INTEN_SOFTOKEN;
        }
    
        if ((status & USB_ISTAT_TOKDNE /* 08 */ )) {
            uint8_t endpoint;
            stat = USB0_STAT;
            endpoint = stat >> 4;
            if (endpoint == 0) {
                usb_control(stat);
            } else {
                bdt_t *b = stat2bufferdescriptor(stat);
                usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8);
                endpoint--; // endpoint is index to zero-based arrays
    
                if (stat & 0x08) { // transmit
                    usb_free(packet);
                    packet = tx_first[endpoint];
                    if (packet) {
                        tx_first[endpoint] = packet->next;
                        b->addr = packet->buf;
                        switch (tx_state[endpoint]) {
                          case TX_STATE_BOTH_FREE_EVEN_FIRST:
                            tx_state[endpoint] = TX_STATE_ODD_FREE;
                            break;
                          case TX_STATE_BOTH_FREE_ODD_FIRST:
                            tx_state[endpoint] = TX_STATE_EVEN_FREE;
                            break;
                          case TX_STATE_EVEN_FREE:
                            tx_state[endpoint] = TX_STATE_NONE_FREE_ODD_FIRST;
                            break;
                          case TX_STATE_ODD_FREE:
                            tx_state[endpoint] = TX_STATE_NONE_FREE_EVEN_FIRST;
                            break;
                          default:
                            break;
                        }
                        b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
                    } else {
                        switch (tx_state[endpoint]) {
                          case TX_STATE_BOTH_FREE_EVEN_FIRST:
                          case TX_STATE_BOTH_FREE_ODD_FIRST:
                            break;
                          case TX_STATE_EVEN_FREE:
                            tx_state[endpoint] = TX_STATE_BOTH_FREE_EVEN_FIRST;
                            break;
                          case TX_STATE_ODD_FREE:
                            tx_state[endpoint] = TX_STATE_BOTH_FREE_ODD_FIRST;
                            break;
                          default:
                            tx_state[endpoint] = ((uint32_t)b & 8) ?
                              TX_STATE_ODD_FREE : TX_STATE_EVEN_FREE;
                            break;
                        }
                    }
                } else { // receive
                    packet->len = b->desc >> 16;
                    if (packet->len > 0) {
                        packet->next = NULL;
                        if (rx_first[endpoint] == NULL) {
                            rx_first[endpoint] = packet;
                        } else {
                            rx_last[endpoint]->next = packet;
                        }
                        rx_last[endpoint] = packet;
                        usb_rx_byte_count_data[endpoint] += packet->len;
                        // TODO: implement a per-endpoint maximum # of allocated packets
                        // so a flood of incoming data on 1 endpoint doesn't starve
                        // the others if the user isn't reading it regularly
                        packet = usb_malloc();
                        if (packet) {
                            b->addr = packet->buf;
                            b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
                        } else {
                            b->desc = 0;
                            usb_rx_memory_needed++;
                        }
                    } else {
                        b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
                    }
                }
    
    
    
    
            }
            USB0_ISTAT = USB_ISTAT_TOKDNE;
            goto restart;
        }
    
        if (status & USB_ISTAT_USBRST /* 01 */ ) {
    
            // initialize BDT toggle bits
            USB0_CTL = USB_CTL_ODDRST;
            ep0_tx_bdt_bank = 0;
    
            // set up buffers to receive Setup and OUT packets
            table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 0);
            table[index(0, RX, EVEN)].addr = ep0_rx0_buf;
            table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 0);
            table[index(0, RX, ODD)].addr = ep0_rx1_buf;
            table[index(0, TX, EVEN)].desc = 0;
    
            table[index(0, TX, EVEN)].addr = ep0_tx0_buf;
    
            table[index(0, TX, ODD)].desc = 0;
    
            // activate endpoint 0
            USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
    
            // clear all ending interrupts
            USB0_ERRSTAT = 0xFF;
            USB0_ISTAT = 0xFF;
    
            // set the address to zero during enumeration
            USB0_ADDR = 0;
    
            // enable other interrupts
            USB0_ERREN = 0xFF;
            USB0_INTEN = USB_INTEN_TOKDNEEN |
                USB_INTEN_SOFTOKEN |
                USB_INTEN_STALLEN |
                USB_INTEN_ERROREN |
                USB_INTEN_USBRSTEN |
                USB_INTEN_SLEEPEN;
    
            // is this necessary?
            USB0_CTL = USB_CTL_USBENSOFEN;
            return;
        }
    
        if ((status & USB_ISTAT_STALL /* 80 */ )) {
            USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
            USB0_ISTAT = USB_ISTAT_STALL;
        }
        if ((status & USB_ISTAT_ERROR /* 02 */ )) {
            uint8_t err = USB0_ERRSTAT;
            USB0_ERRSTAT = err;
            USB0_ISTAT = USB_ISTAT_ERROR;
        }
    
        if ((status & USB_ISTAT_SLEEP /* 10 */ )) {
            USB0_ISTAT = USB_ISTAT_SLEEP;
        }
    
        usb_init_serialnumber();
    
        for (i=0; i <= NUM_ENDPOINTS*4; i++) {
            table[i].desc = 0;
            table[i].addr = 0;
        }
    
        // this basically follows the flowchart in the Kinetis
        // Quick Reference User Guide, Rev. 1, 03/2012, page 141
    
        // assume 48 MHz clock already running
        // SIM - enable clock
        SIM_SCGC4 |= SIM_SCGC4_USBOTG;
    
        // reset USB module
        USB0_USBTRC0 = USB_USBTRC_USBRESET;
        while ((USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0) ; // wait for reset to end
    
        // set desc table base addr
        USB0_BDTPAGE1 = ((uint32_t)table) >> 8;
        USB0_BDTPAGE2 = ((uint32_t)table) >> 16;
        USB0_BDTPAGE3 = ((uint32_t)table) >> 24;
    
        // clear all ISR flags
        USB0_ISTAT = 0xFF;
        USB0_ERRSTAT = 0xFF;
        USB0_OTGISTAT = 0xFF;
    
        USB0_USBTRC0 |= 0x40; // undocumented bit
    
        // enable USB
        USB0_CTL = USB_CTL_USBENSOFEN;
        USB0_USBCTRL = 0;
    
        // enable reset interrupt
        USB0_INTEN = USB_INTEN_USBRSTEN;
    
        // enable interrupt in NVIC...
        NVIC_ENABLE_IRQ(IRQ_USBOTG);
    
        // enable d+ pullup
        USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG;