Skip to content
Snippets Groups Projects
usb_dev.c 24.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
    /* Teensyduino Core Library
     * http://www.pjrc.com/teensy/
     * Copyright (c) 2013 PJRC.COM, LLC.
     *
     * Permission is hereby granted, free of charge, to any person obtaining
     * a copy of this software and associated documentation files (the
     * "Software"), to deal in the Software without restriction, including
     * without limitation the rights to use, copy, modify, merge, publish,
     * distribute, sublicense, and/or sell copies of the Software, and to
     * permit persons to whom the Software is furnished to do so, subject to
     * the following conditions:
     *
     * 1. The above copyright notice and this permission notice shall be 
     * included in all copies or substantial portions of the Software.
     *
     * 2. If the Software is incorporated into a build system that allows 
     * selection among a list of target devices, then similar target
     * devices manufactured by PJRC.COM must be included in the list of
     * target devices and selectable in the same manner.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     * SOFTWARE.
     */
    
    #include "mk20dx128.h"
    #include "usb_dev.h"
    #include "usb_mem.h"
    
    // buffer descriptor table
    
    typedef struct {
    	uint32_t desc;
    	void * addr;
    } bdt_t;
    
    __attribute__ ((section(".usbdescriptortable"), used))
    static bdt_t table[(NUM_ENDPOINTS+1)*4];
    
    static usb_packet_t *rx_first[NUM_ENDPOINTS];
    static usb_packet_t *rx_last[NUM_ENDPOINTS];
    static usb_packet_t *tx_first[NUM_ENDPOINTS];
    static usb_packet_t *tx_last[NUM_ENDPOINTS];
    uint16_t usb_rx_byte_count_data[NUM_ENDPOINTS];
    
    static uint8_t tx_state[NUM_ENDPOINTS];
    #define TX_STATE_BOTH_FREE_EVEN_FIRST	0
    #define TX_STATE_BOTH_FREE_ODD_FIRST	1
    #define TX_STATE_EVEN_FREE		2
    #define TX_STATE_ODD_FREE		3
    #define TX_STATE_NONE_FREE_EVEN_FIRST	4
    #define TX_STATE_NONE_FREE_ODD_FIRST	5
    
    #define BDT_OWN		0x80
    #define BDT_DATA1	0x40
    #define BDT_DATA0	0x00
    #define BDT_DTS		0x08
    #define BDT_STALL	0x04
    #define BDT_PID(n)	(((n) >> 2) & 15)
    
    #define BDT_DESC(count, data)	(BDT_OWN | BDT_DTS \
    				| ((data) ? BDT_DATA1 : BDT_DATA0) \
    				| ((count) << 16))
    
    #define TX   1
    #define RX   0
    #define ODD  1
    #define EVEN 0
    #define DATA0 0
    #define DATA1 1
    #define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
    #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
    
    
    static union {
     struct {
      union {
       struct {
    	uint8_t bmRequestType;
    	uint8_t bRequest;
       };
    	uint16_t wRequestAndType;
      };
    	uint16_t wValue;
    	uint16_t wIndex;
    	uint16_t wLength;
     };
     struct {
    	uint32_t word1;
    	uint32_t word2;
     };
    } setup;
    
    
    #define GET_STATUS		0
    #define CLEAR_FEATURE		1
    #define SET_FEATURE		3
    #define SET_ADDRESS		5
    #define GET_DESCRIPTOR		6
    #define SET_DESCRIPTOR		7
    #define GET_CONFIGURATION	8
    #define SET_CONFIGURATION	9
    #define GET_INTERFACE		10
    #define SET_INTERFACE		11
    #define SYNCH_FRAME		12
    
    // SETUP always uses a DATA0 PID for the data field of the SETUP transaction.
    // transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1)
    // Status stage uses a DATA1 PID.
    
    static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
    static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
    static const uint8_t *ep0_tx_ptr = NULL;
    static uint16_t ep0_tx_len;
    static uint8_t ep0_tx_bdt_bank = 0;
    static uint8_t ep0_tx_data_toggle = 0;
    uint8_t usb_rx_memory_needed = 0;
    
    volatile uint8_t usb_configuration = 0;
    volatile uint8_t usb_reboot_timer = 0;
    
    
    static void endpoint0_stall(void)
    {
    	USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
    }
    
    
    static void endpoint0_transmit(const void *data, uint32_t len)
    {
    #if 0
    	serial_print("tx0:");
    	serial_phex32((uint32_t)data);
    	serial_print(",");
    	serial_phex16(len);
    	serial_print(ep0_tx_bdt_bank ? ", odd" : ", even");
    	serial_print(ep0_tx_data_toggle ? ", d1\n" : ", d0\n");
    #endif
    	table[index(0, TX, ep0_tx_bdt_bank)].addr = (void *)data;
    	table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle);
    	ep0_tx_data_toggle ^= 1;
    	ep0_tx_bdt_bank ^= 1;
    }
    
    static uint8_t reply_buffer[8];
    
    static void usb_setup(void)
    {
    	const uint8_t *data = NULL;
    	uint32_t datalen = 0;
    	const usb_descriptor_list_t *list;
    	uint32_t size;
    	volatile uint8_t *reg;
    	uint8_t epconf;
    	const uint8_t *cfg;
    	int i;
    
    	switch (setup.wRequestAndType) {
    	  case 0x0500: // SET_ADDRESS
    		break;
    	  case 0x0900: // SET_CONFIGURATION
    		//serial_print("configure\n");
    		usb_configuration = setup.wValue;
    		reg = &USB0_ENDPT1;
    		cfg = usb_endpoint_config_table;
    		// clear all BDT entries, free any allocated memory...
    		for (i=4; i <= NUM_ENDPOINTS*4; i++) {
    			if (table[i].desc & BDT_OWN) {
    				usb_free((usb_packet_t *)((uint8_t *)(table[i].addr) - 8));
    			}
    		}
    		// free all queued packets
    		for (i=0; i < NUM_ENDPOINTS; i++) {
    			usb_packet_t *p, *n;
    			p = rx_first[i];
    			while (p) {
    				n = p->next;
    				usb_free(p);
    				p = n;
    			}
    			rx_first[i] = NULL;
    			rx_last[i] = NULL;
    			p = tx_first[i];
    			while (p) {
    				n = p->next;
    				usb_free(p);
    				p = n;
    			}
    			tx_first[i] = NULL;
    			tx_last[i] = NULL;
    			usb_rx_byte_count_data[i] = 0;
    			switch (tx_state[i]) {
    			  case TX_STATE_EVEN_FREE:
    			  case TX_STATE_NONE_FREE_EVEN_FIRST:
    				tx_state[i] = TX_STATE_BOTH_FREE_EVEN_FIRST;
    				break;
    			  case TX_STATE_ODD_FREE:
    			  case TX_STATE_NONE_FREE_ODD_FIRST:
    				tx_state[i] = TX_STATE_BOTH_FREE_ODD_FIRST;
    				break;
    			  default:
    				break;
    			}
    		}
    		usb_rx_memory_needed = 0;
    		for (i=1; i <= NUM_ENDPOINTS; i++) {
    			epconf = *cfg++;
    			*reg = epconf;
    			reg += 4;
    			if (epconf & USB_ENDPT_EPRXEN) {
    				usb_packet_t *p;
    				p = usb_malloc();
    				if (p) {
    					table[index(i, RX, EVEN)].addr = p->buf;
    					table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
    				} else {
    					table[index(i, RX, EVEN)].desc = 0;
    					usb_rx_memory_needed++;
    				}
    				p = usb_malloc();
    				if (p) {
    					table[index(i, RX, ODD)].addr = p->buf;
    					table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
    				} else {
    					table[index(i, RX, ODD)].desc = 0;
    					usb_rx_memory_needed++;
    				}
    			}
    			table[index(i, TX, EVEN)].desc = 0;
    			table[index(i, TX, ODD)].desc = 0;
    		}
    		break;
    	  case 0x0880: // GET_CONFIGURATION
    		reply_buffer[0] = usb_configuration;
    		datalen = 1;
    		data = reply_buffer;
    		break;
    	  case 0x0080: // GET_STATUS (device)
    		reply_buffer[0] = 0;
    		reply_buffer[1] = 0;
    		datalen = 2;
    		data = reply_buffer;
    		break;
    	  case 0x0082: // GET_STATUS (endpoint)
    		if (setup.wIndex > NUM_ENDPOINTS) {
    			// TODO: do we need to handle IN vs OUT here?
    			endpoint0_stall();
    			return;
    		}
    		reply_buffer[0] = 0;
    		reply_buffer[1] = 0;
    		if (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02) reply_buffer[0] = 1;
    		data = reply_buffer;
    		datalen = 2;
    		break;
    	  case 0x0102: // CLEAR_FEATURE (endpoint)
    		i = setup.wIndex & 0x7F;
    		if (i > NUM_ENDPOINTS || setup.wValue != 0) {
    			// TODO: do we need to handle IN vs OUT here?
    			endpoint0_stall();
    			return;
    		}
    		(*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) &= ~0x02;
    		// TODO: do we need to clear the data toggle here?
    		break;
    	  case 0x0302: // SET_FEATURE (endpoint)
    		i = setup.wIndex & 0x7F;
    		if (i > NUM_ENDPOINTS || setup.wValue != 0) {
    			// TODO: do we need to handle IN vs OUT here?
    			endpoint0_stall();
    			return;
    		}
    		(*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) |= 0x02;
    		// TODO: do we need to clear the data toggle here?
    		break;
    	  case 0x0680: // GET_DESCRIPTOR
    	  case 0x0681:
    		//serial_print("desc:");
    		//serial_phex16(setup.wValue);
    		//serial_print("\n");
    		for (list = usb_descriptor_list; 1; list++) {
    			if (list->addr == NULL) break;
    			//if (setup.wValue == list->wValue && 
    			//(setup.wIndex == list->wIndex) || ((setup.wValue >> 8) == 3)) {
    			if (setup.wValue == list->wValue && setup.wIndex == list->wIndex) {
    				data = list->addr;
    				if ((setup.wValue >> 8) == 3) {
    					// for string descriptors, use the descriptor's
    					// length field, allowing runtime configured
    					// length.
    					datalen = *(list->addr);
    				} else {
    					datalen = list->length;
    				}
    #if 0
    				serial_print("Desc found, ");
    				serial_phex32((uint32_t)data);
    				serial_print(",");
    				serial_phex16(datalen);
    				serial_print(",");
    				serial_phex(data[0]);
    				serial_phex(data[1]);
    				serial_phex(data[2]);
    				serial_phex(data[3]);
    				serial_phex(data[4]);
    				serial_phex(data[5]);
    				serial_print("\n");
    #endif
    				goto send;
    			}
    		}
    		//serial_print("desc: not found\n");
    		endpoint0_stall();
    		return;
    #if defined(CDC_STATUS_INTERFACE)
    	  case 0x2221: // CDC_SET_CONTROL_LINE_STATE
    		usb_cdc_line_rtsdtr = setup.wValue;
    		//serial_print("set control line state\n");
    		break;
    	  case 0x2021: // CDC_SET_LINE_CODING
    		//serial_print("set coding, waiting...\n");
    		return;
    #endif
    
    // TODO: this does not work... why?
    #if defined(SEREMU_INTERFACE) || defined(KEYBOARD_INTERFACE)
    	  case 0x0921: // HID SET_REPORT
    		//serial_print(":)\n");
    		return;
    	  case 0x0A21: // HID SET_IDLE
    		break;
    	  // case 0xC940:
    #endif
    	  default:
    		endpoint0_stall();
    		return;
    	}
    	send:
    	//serial_print("setup send ");
    	//serial_phex32(data);
    	//serial_print(",");
    	//serial_phex16(datalen);
    	//serial_print("\n");
    
    	if (datalen > setup.wLength) datalen = setup.wLength;
    	size = datalen;
    	if (size > EP0_SIZE) size = EP0_SIZE;
    	endpoint0_transmit(data, size);
    	data += size;
    	datalen -= size;
    	if (datalen == 0 && size < EP0_SIZE) return;
    
    	size = datalen;
    	if (size > EP0_SIZE) size = EP0_SIZE;
    	endpoint0_transmit(data, size);
    	data += size;
    	datalen -= size;
    	if (datalen == 0 && size < EP0_SIZE) return;
    
    	ep0_tx_ptr = data;
    	ep0_tx_len = datalen;
    }
    
    
    
    //A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint
    //experiences any configuration event (configuration events are explained in
    //Sections 9.1.1.5 and 9.4.5).
    
    //Configuring a device or changing an alternate setting causes all of the status
    //and configuration values associated with endpoints in the affected interfaces
    //to be set to their default values. This includes setting the data toggle of
    //any endpoint using data toggles to the value DATA0.
    
    //For endpoints using data toggle, regardless of whether an endpoint has the
    //Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the
    //data toggle being reinitialized to DATA0.
    
    
    
    // #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
    
    static void usb_control(uint32_t stat)
    {
    	bdt_t *b;
    	uint32_t pid, size;
    	uint8_t *buf;
    	const uint8_t *data;
    
    	b = stat2bufferdescriptor(stat);
    	pid = BDT_PID(b->desc);
    	//count = b->desc >> 16;
    	buf = b->addr;
    	//serial_print("pid:");
    	//serial_phex(pid);
    	//serial_print(", count:");
    	//serial_phex(count);
    	//serial_print("\n");
    
    	switch (pid) {
    	case 0x0D: // Setup received from host
    		//serial_print("PID=Setup\n");
    		//if (count != 8) ; // panic?
    		// grab the 8 byte setup info
    		setup.word1 = *(uint32_t *)(buf);
    		setup.word2 = *(uint32_t *)(buf + 4);
    
    		// give the buffer back
    		b->desc = BDT_DESC(EP0_SIZE, DATA1);
    		//table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 1);
    		//table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 1);
    
    		// clear any leftover pending IN transactions
    		ep0_tx_ptr = NULL;
    		if (ep0_tx_data_toggle) {
    		}
    		//if (table[index(0, TX, EVEN)].desc & 0x80) {
    			//serial_print("leftover tx even\n");
    		//}
    		//if (table[index(0, TX, ODD)].desc & 0x80) {
    			//serial_print("leftover tx odd\n");
    		//}
    		table[index(0, TX, EVEN)].desc = 0;
    		table[index(0, TX, ODD)].desc = 0;
    		// first IN after Setup is always DATA1
    		ep0_tx_data_toggle = 1;
    
    #if 0
    		serial_print("bmRequestType:");
    		serial_phex(setup.bmRequestType);
    		serial_print(", bRequest:");
    		serial_phex(setup.bRequest);
    		serial_print(", wValue:");
    		serial_phex16(setup.wValue);
    		serial_print(", wIndex:");
    		serial_phex16(setup.wIndex);
    		serial_print(", len:");
    		serial_phex16(setup.wLength);
    		serial_print("\n");
    #endif
    		// actually "do" the setup request
    		usb_setup();
    		// unfreeze the USB, now that we're ready
    		USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
    		break;
    	case 0x01:  // OUT transaction received from host
    	case 0x02:
    		//serial_print("PID=OUT\n");
    #ifdef CDC_STATUS_INTERFACE
    		if (setup.wRequestAndType == 0x2021 /*CDC_SET_LINE_CODING*/) {
    			int i;
    			uint8_t *dst = (uint8_t *)usb_cdc_line_coding;
    			//serial_print("set line coding ");
    			for (i=0; i<7; i++) {
    				//serial_phex(*buf);
    				*dst++ = *buf++;
    			}
    			//serial_phex32(usb_cdc_line_coding[0]);
    			//serial_print("\n");
    			if (usb_cdc_line_coding[0] == 134) usb_reboot_timer = 15;
    			endpoint0_transmit(NULL, 0);
    		}
    #endif
    #ifdef KEYBOARD_INTERFACE
    		if (setup.word1 == 0x02000921 && setup.word2 == ((1<<16)|KEYBOARD_INTERFACE)) {
    			keyboard_leds = buf[0];
    			endpoint0_transmit(NULL, 0);
    		}
    #endif
    #ifdef SEREMU_INTERFACE
    		if (setup.word1 == 0x03000921 && setup.word2 == ((4<<16)|SEREMU_INTERFACE)
    		  && buf[0] == 0xA9 && buf[1] == 0x45 && buf[2] == 0xC2 && buf[3] == 0x6B) {
    			usb_reboot_timer = 5;
    			endpoint0_transmit(NULL, 0);
    		}
    #endif
    		// give the buffer back
    		b->desc = BDT_DESC(EP0_SIZE, DATA1);
    		break;
    
    	case 0x09: // IN transaction completed to host
    		//serial_print("PID=IN:");
    		//serial_phex(stat);
    		//serial_print("\n");
    
    		// send remaining data, if any...
    		data = ep0_tx_ptr;
    		if (data) {
    			size = ep0_tx_len;
    			if (size > EP0_SIZE) size = EP0_SIZE;
    			endpoint0_transmit(data, size);
    			data += size;
    			ep0_tx_len -= size;
    			ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL;
    		}
    
    		if (setup.bRequest == 5 && setup.bmRequestType == 0) {
    			setup.bRequest = 0;
    			//serial_print("set address: ");
    			//serial_phex16(setup.wValue);
    			//serial_print("\n");
    			USB0_ADDR = setup.wValue;
    		}
    
    		break;
    	//default:
    		//serial_print("PID=unknown:");
    		//serial_phex(pid);
    		//serial_print("\n");
    	}
    	USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
    }
    
    
    
    
    
    
    usb_packet_t *usb_rx(uint32_t endpoint)
    {
    	usb_packet_t *ret;
    	endpoint--;
    	if (endpoint >= NUM_ENDPOINTS) return NULL;
    	__disable_irq();
    	ret = rx_first[endpoint];
    	if (ret) rx_first[endpoint] = ret->next;
    	usb_rx_byte_count_data[endpoint] -= ret->len;
    	__enable_irq();
    	//serial_print("rx, epidx=");
    	//serial_phex(endpoint);
    	//serial_print(", packet=");
    	//serial_phex32(ret);
    	//serial_print("\n");
    	return ret;
    }
    
    static uint32_t usb_queue_byte_count(const usb_packet_t *p)
    {
    	uint32_t count=0;
    
    	__disable_irq();
    	for ( ; p; p = p->next) {
    		count += p->len;
    	}
    	__enable_irq();
    	return count;
    }
    
    // TODO: make this an inline function...
    /*
    uint32_t usb_rx_byte_count(uint32_t endpoint)
    {
    	endpoint--;
    	if (endpoint >= NUM_ENDPOINTS) return 0;
    	return usb_rx_byte_count_data[endpoint];
    	//return usb_queue_byte_count(rx_first[endpoint]);
    }
    */
    
    uint32_t usb_tx_byte_count(uint32_t endpoint)
    {
    	endpoint--;
    	if (endpoint >= NUM_ENDPOINTS) return 0;
    	return usb_queue_byte_count(tx_first[endpoint]);
    }
    
    uint32_t usb_tx_packet_count(uint32_t endpoint)
    {
    	const usb_packet_t *p;
    	uint32_t count=0;
    
    	endpoint--;
    	if (endpoint >= NUM_ENDPOINTS) return 0;
    	p = tx_first[endpoint];
    	__disable_irq();
    	for ( ; p; p = p->next) count++;
    	__enable_irq();
    	return count;
    }
    
    
    // Called from usb_free, but only when usb_rx_memory_needed > 0, indicating
    // receive endpoints are starving for memory.  The intention is to give
    // endpoints needing receive memory priority over the user's code, which is
    // likely calling usb_malloc to obtain memory for transmitting.  When the
    // user is creating data very quickly, their consumption could starve reception
    // without this prioritization.  The packet buffer (input) is assigned to the
    // first endpoint needing memory.
    //
    void usb_rx_memory(usb_packet_t *packet)
    {
    	unsigned int i;
    	const uint8_t *cfg;
    
    	cfg = usb_endpoint_config_table;
    	//serial_print("rx_mem:");
    	__disable_irq();
    	for (i=1; i <= NUM_ENDPOINTS; i++) {
    		if (*cfg++ & USB_ENDPT_EPRXEN) {
    			if (table[index(i, RX, EVEN)].desc == 0) {
    				table[index(i, RX, EVEN)].addr = packet->buf;
    				table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
    				usb_rx_memory_needed--;
    				__enable_irq();
    				//serial_phex(i);
    				//serial_print(",even\n");
    				return;
    			}
    			if (table[index(i, RX, ODD)].desc == 0) {
    				table[index(i, RX, ODD)].addr = packet->buf;
    				table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
    				usb_rx_memory_needed--;
    				__enable_irq();
    				//serial_phex(i);
    				//serial_print(",odd\n");
    				return;
    			}
    		}
    	}
    	__enable_irq();
    	// we should never reach this point.  If we get here, it means
    	// usb_rx_memory_needed was set greater than zero, but no memory
    	// was actually needed.  
    	usb_rx_memory_needed = 0;
    	usb_free(packet);
    	return;
    }
    
    //#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
    //#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
    
    void usb_tx(uint32_t endpoint, usb_packet_t *packet)
    {
    	bdt_t *b = &table[index(endpoint, TX, EVEN)];
    	uint8_t next;
    
    	endpoint--;
    	if (endpoint >= NUM_ENDPOINTS) return;
    	__disable_irq();
    	//serial_print("txstate=");
    	//serial_phex(tx_state[endpoint]);
    	//serial_print("\n");
    	switch (tx_state[endpoint]) {
    	  case TX_STATE_BOTH_FREE_EVEN_FIRST:
    		next = TX_STATE_ODD_FREE;
    		break;
    	  case TX_STATE_BOTH_FREE_ODD_FIRST:
    		b++;
    		next = TX_STATE_EVEN_FREE;
    		break;
    	  case TX_STATE_EVEN_FREE:
    		next = TX_STATE_NONE_FREE_ODD_FIRST;
    		break;
    	  case TX_STATE_ODD_FREE:
    		b++;
    		next = TX_STATE_NONE_FREE_EVEN_FIRST;
    		break;
    	  default:
    		if (tx_first[endpoint] == NULL) {
    			tx_first[endpoint] = packet;
    		} else {
    			tx_last[endpoint]->next = packet;
    		}
    		tx_last[endpoint] = packet;
    		__enable_irq();
    		return;
    	}
    	tx_state[endpoint] = next;
    	b->addr = packet->buf;
    	b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
    	__enable_irq();
    }
    
    
    
    
    
    
    void _reboot_Teensyduino_(void)
    {
    	// TODO: initialize R0 with a code....
    	asm volatile("bkpt");
    }
    
    
    
    void usb_isr(void)
    {
    	uint8_t status, stat, t;
    
    	//serial_print("isr");
    	//status = USB0_ISTAT;
    	//serial_phex(status);
    	//serial_print("\n");
    	restart:
    	status = USB0_ISTAT;
    
    	if ((status & USB_INTEN_SOFTOKEN /* 04 */ )) {
    		if (usb_configuration) {
    			t = usb_reboot_timer;
    			if (t) {
    				usb_reboot_timer = --t;
    				if (!t) _reboot_Teensyduino_();
    			}
    		}
    		USB0_ISTAT = USB_INTEN_SOFTOKEN;
    	}
    
    	if ((status & USB_ISTAT_TOKDNE /* 08 */ )) {
    		uint8_t endpoint;
    		stat = USB0_STAT;
    		//serial_print("token: ep=");
    		//serial_phex(stat >> 4);
    		//serial_print(stat & 0x08 ? ",tx" : ",rx");
    		//serial_print(stat & 0x04 ? ",odd\n" : ",even\n");
    		endpoint = stat >> 4;
    		if (endpoint == 0) {
    			usb_control(stat);
    		} else {
    			bdt_t *b = stat2bufferdescriptor(stat);
    			usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8);
    #if 0
    			serial_print("ep:");
    			serial_phex(endpoint);
    			serial_print(", pid:");
    			serial_phex(BDT_PID(b->desc));
    			serial_print(((uint32_t)b & 8) ? ", odd" : ", even");
    			serial_print(", count:");
    			serial_phex(b->desc >> 16);
    			serial_print("\n");
    #endif
    			endpoint--;	// endpoint is index to zero-based arrays
    
    			if (stat & 0x08) { // transmit
    				usb_free(packet);
    				packet = tx_first[endpoint];
    				if (packet) {
    					//serial_print("tx packet\n");
    					tx_first[endpoint] = packet->next;
    					b->addr = packet->buf;
    					switch (tx_state[endpoint]) {
    					  case TX_STATE_BOTH_FREE_EVEN_FIRST:
    						tx_state[endpoint] = TX_STATE_ODD_FREE;
    						break;
    					  case TX_STATE_BOTH_FREE_ODD_FIRST:
    						tx_state[endpoint] = TX_STATE_EVEN_FREE;
    						break;
    					  case TX_STATE_EVEN_FREE:
    						tx_state[endpoint] = TX_STATE_NONE_FREE_ODD_FIRST;
    						break;
    					  case TX_STATE_ODD_FREE:
    						tx_state[endpoint] = TX_STATE_NONE_FREE_EVEN_FIRST;
    						break;
    					  default:
    						break;
    					}
    					b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
    				} else {
    					//serial_print("tx no packet\n");
    					switch (tx_state[endpoint]) {
    					  case TX_STATE_BOTH_FREE_EVEN_FIRST:
    					  case TX_STATE_BOTH_FREE_ODD_FIRST:
    						break;
    					  case TX_STATE_EVEN_FREE:
    						tx_state[endpoint] = TX_STATE_BOTH_FREE_EVEN_FIRST;
    						break;
    					  case TX_STATE_ODD_FREE:
    						tx_state[endpoint] = TX_STATE_BOTH_FREE_ODD_FIRST;
    						break;
    					  default:
    						tx_state[endpoint] = ((uint32_t)b & 8) ?
    						  TX_STATE_ODD_FREE : TX_STATE_EVEN_FREE;
    						break;
    					}
    				}
    			} else { // receive
    				packet->len = b->desc >> 16;
    				if (packet->len > 0) {
    					packet->index = 0;
    					packet->next = NULL;
    					if (rx_first[endpoint] == NULL) {
    						//serial_print("rx 1st, epidx=");
    						//serial_phex(endpoint);
    						//serial_print(", packet=");
    						//serial_phex32((uint32_t)packet);
    						//serial_print("\n");
    						rx_first[endpoint] = packet;
    					} else {
    						//serial_print("rx Nth, epidx=");
    						//serial_phex(endpoint);
    						//serial_print(", packet=");
    						//serial_phex32((uint32_t)packet);
    						//serial_print("\n");
    						rx_last[endpoint]->next = packet;
    					}
    					rx_last[endpoint] = packet;
    					usb_rx_byte_count_data[endpoint] += packet->len;
    					// TODO: implement a per-endpoint maximum # of allocated packets
    					// so a flood of incoming data on 1 endpoint doesn't starve
    					// the others if the user isn't reading it regularly
    					packet = usb_malloc();
    					if (packet) {
    						b->addr = packet->buf;
    						b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
    					} else {
    						//serial_print("starving ");
    						//serial_phex(endpoint + 1);
    						//serial_print(((uint32_t)b & 8) ? ",odd\n" : ",even\n");
    						b->desc = 0;
    						usb_rx_memory_needed++;
    					}
    				} else {
    					b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
    				}
    			}
    
    
    
    
    		}
    		USB0_ISTAT = USB_ISTAT_TOKDNE;
    		goto restart;
    	}
    
    
    
    	if (status & USB_ISTAT_USBRST /* 01 */ ) {
    		//serial_print("reset\n");
    
    		// initialize BDT toggle bits
    		USB0_CTL = USB_CTL_ODDRST;
    		ep0_tx_bdt_bank = 0;
    
    		// set up buffers to receive Setup and OUT packets
    		table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 0);
    		table[index(0, RX, EVEN)].addr = ep0_rx0_buf;
    		table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 0);
    		table[index(0, RX, ODD)].addr = ep0_rx1_buf;
    		table[index(0, TX, EVEN)].desc = 0;
    		table[index(0, TX, ODD)].desc = 0;
    		
    		// activate endpoint 0
    		USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
    
    		// clear all ending interrupts
    		USB0_ERRSTAT = 0xFF;
    		USB0_ISTAT = 0xFF;
    
    		// set the address to zero during enumeration
    		USB0_ADDR = 0;
    
    		// enable other interrupts
    		USB0_ERREN = 0xFF;
    		USB0_INTEN = USB_INTEN_TOKDNEEN |
    			USB_INTEN_SOFTOKEN |
    			USB_INTEN_STALLEN |
    			USB_INTEN_ERROREN |
    			USB_INTEN_USBRSTEN |
    			USB_INTEN_SLEEPEN;
    
    		// is this necessary?
    		USB0_CTL = USB_CTL_USBENSOFEN;
    		return;
    	}
    
    
    	if ((status & USB_ISTAT_STALL /* 80 */ )) {
    		//serial_print("stall:\n");
    		USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
    		USB0_ISTAT = USB_ISTAT_STALL;
    	}
    	if ((status & USB_ISTAT_ERROR /* 02 */ )) {
    		uint8_t err = USB0_ERRSTAT;
    		USB0_ERRSTAT = err;
    		//serial_print("err:");
    		//serial_phex(err);
    		//serial_print("\n");
    		USB0_ISTAT = USB_ISTAT_ERROR;
    	}
    
    	if ((status & USB_ISTAT_SLEEP /* 10 */ )) {
    		//serial_print("sleep\n");
    		USB0_ISTAT = USB_ISTAT_SLEEP;
    	}
    
    }
    
    
    
    void usb_init(void)
    {
    	int i;
    
    	//serial_begin(BAUD2DIV(115200));
    	//serial_print("usb_init\n");
    
    	usb_init_serialnumber();
    
    	for (i=0; i <= NUM_ENDPOINTS*4; i++) {
    		table[i].desc = 0;
    		table[i].addr = 0;
    	}
    
    	// this basically follows the flowchart in the Kinetis
    	// Quick Reference User Guide, Rev. 1, 03/2012, page 141
    
    	// assume 48 MHz clock already running
    	// SIM - enable clock
    	SIM_SCGC4 |= SIM_SCGC4_USBOTG;
    
    	// reset USB module
    	USB0_USBTRC0 = USB_USBTRC_USBRESET;
    	while ((USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0) ; // wait for reset to end
    
    	// set desc table base addr
    	USB0_BDTPAGE1 = ((uint32_t)table) >> 8;
    	USB0_BDTPAGE2 = ((uint32_t)table) >> 16;
    	USB0_BDTPAGE3 = ((uint32_t)table) >> 24;
    
    	// clear all ISR flags
    	USB0_ISTAT = 0xFF;
    	USB0_ERRSTAT = 0xFF;
    	USB0_OTGISTAT = 0xFF;
    
    	USB0_USBTRC0 |= 0x40; // undocumented bit
    
    	// enable USB
    	USB0_CTL = USB_CTL_USBENSOFEN;
    	USB0_USBCTRL = 0;
    
    	// enable reset interrupt
    	USB0_INTEN = USB_INTEN_USBRSTEN;
    
    	// enable interrupt in NVIC...
    	NVIC_ENABLE_IRQ(IRQ_USBOTG);
    
    	// enable d+ pullup
    	USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG;
    }