Skip to content
Snippets Groups Projects
pins_teensy.c 12.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* Teensyduino Core Library
     * http://www.pjrc.com/teensy/
     * Copyright (c) 2013 PJRC.COM, LLC.
     *
     * Permission is hereby granted, free of charge, to any person obtaining
     * a copy of this software and associated documentation files (the
     * "Software"), to deal in the Software without restriction, including
     * without limitation the rights to use, copy, modify, merge, publish,
     * distribute, sublicense, and/or sell copies of the Software, and to
     * permit persons to whom the Software is furnished to do so, subject to
     * the following conditions:
     *
     * 1. The above copyright notice and this permission notice shall be 
     * included in all copies or substantial portions of the Software.
     *
     * 2. If the Software is incorporated into a build system that allows 
     * selection among a list of target devices, then similar target
     * devices manufactured by PJRC.COM must be included in the list of
     * target devices and selectable in the same manner.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     * SOFTWARE.
     */
    
    #include "core_pins.h"
    #include "pins_arduino.h"
    
    #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
    #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
    //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
    //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
    
    const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
    
        {GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
        {GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG}
    
    };
    
    unsigned long rtc_get(void)
    {
    
    }
    
    void rtc_set(unsigned long t)
    {
    
        RTC_SR = 0;
        RTC_TPR = 0;
        RTC_TSR = t;
        RTC_SR = RTC_SR_TCE;
    
    }
    
    
    // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
    // For example, adjust = -100 is slows the clock by 11.92 ppm
    //
    void rtc_compensate(int adjust)
    {
    
        uint32_t comp, interval, tcr;
    
        // This simple approach tries to maximize the interval.
        // Perhaps minimizing TCR would be better, so the
        // compensation is distributed more evenly across
        // many seconds, rather than saving it all up and then
        // altering one second up to +/- 0.38%
        if (adjust >= 0) {
            comp = adjust;
            interval = 256;
            while (1) {
                tcr = comp * interval;
                if (tcr < 128*256) break;
                if (--interval == 1) break;
            }
            tcr = tcr >> 8;
        } else {
            comp = -adjust;
            interval = 256;
            while (1) {
                tcr = comp * interval;
                if (tcr < 129*256) break;
                if (--interval == 1) break;
            }
            tcr = tcr >> 8;
            tcr = 256 - tcr;
        }
        RTC_TCR = ((interval - 1) << 8) | tcr;
    
    }
    
    extern void usb_init(void);
    
    
    // create a default PWM at the same 488.28 Hz as Arduino Uno
    #if F_BUS == 48000000
    #define DEFAULT_FTM_MOD (49152 - 1)
    #define DEFAULT_FTM_PRESCALE 1
    #else
    #define DEFAULT_FTM_MOD (49152 - 1)
    #define DEFAULT_FTM_PRESCALE 0
    #endif
    
    //void init_pins(void)
    void _init_Teensyduino_internal_(void)
    {
    
        //SIM_SCGC6 |= SIM_SCGC6_FTM0;  // TODO: use bitband for atomic read-mod-write
        //SIM_SCGC6 |= SIM_SCGC6_FTM1;
        FTM0_CNT = 0;
        FTM0_MOD = DEFAULT_FTM_MOD;
        FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
        FTM0_C1SC = 0x28;
        FTM0_C2SC = 0x28;
        FTM0_C3SC = 0x28;
        FTM0_C4SC = 0x28;
        FTM0_C5SC = 0x28;
        FTM0_C6SC = 0x28;
        FTM0_C7SC = 0x28;
        FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
        FTM1_CNT = 0;
        FTM1_MOD = DEFAULT_FTM_MOD;
        FTM1_C0SC = 0x28;
        FTM1_C1SC = 0x28;
        FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
    
        usb_init();
    
    }
    
    
    
    // SOPT4 is SIM select clocks?
    // FTM is clocked by the bus clock, either 24 or 48 MHz
    // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
    // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
    
    
    Micah Elizabeth Scott's avatar
    Micah Elizabeth Scott committed
    static const uint8_t analog_write_res = 8;
    
    
    void analogWrite(uint8_t pin, int val)
    {
    
        uint32_t cval, max;
    
        max = 1 << analog_write_res;
        if (val <= 0) {
            digitalWrite(pin, LOW);
            pinMode(pin, OUTPUT);   // TODO: implement OUTPUT_LOW
            return;
        } else if (val >= max) {
            digitalWrite(pin, HIGH);
            pinMode(pin, OUTPUT);   // TODO: implement OUTPUT_HIGH
            return;
        }
    
        //serial_print("analogWrite\n");
        //serial_print("val = ");
        //serial_phex32(val);
        //serial_print("\n");
        //serial_print("analog_write_res = ");
        //serial_phex(analog_write_res);
        //serial_print("\n");
        if (pin == 3 || pin == 4) {
            cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
            //serial_print("FTM1_MOD = ");
            //serial_phex32(FTM1_MOD);
            //serial_print("\n");
        } else {
            cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
            //serial_print("FTM0_MOD = ");
            //serial_phex32(FTM0_MOD);
            //serial_print("\n");
        }
        //serial_print("cval = ");
        //serial_phex32(cval);
        //serial_print("\n");
        switch (pin) {
          case 3: // PTA12, FTM1_CH0
            FTM1_C0V = cval;
            CORE_PIN3_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
            break;
          case 4: // PTA13, FTM1_CH1
            FTM1_C1V = cval;
            CORE_PIN4_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
            break;
          case 5: // PTD7, FTM0_CH7
            FTM0_C7V = cval;
            CORE_PIN5_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
            break;
          case 6: // PTD4, FTM0_CH4
            FTM0_C4V = cval;
            CORE_PIN6_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
            break;
          case 9: // PTC3, FTM0_CH2
            FTM0_C2V = cval;
            CORE_PIN9_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
            break;
          case 10: // PTC4, FTM0_CH3
            FTM0_C3V = cval;
            CORE_PIN10_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
            break;
          case 20: // PTD5, FTM0_CH5
            FTM0_C5V = cval;
            CORE_PIN20_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
            break;
          case 21: // PTD6, FTM0_CH6
            FTM0_C6V = cval;
            CORE_PIN21_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
            break;
          case 22: // PTC1, FTM0_CH0
            FTM0_C0V = cval;
            CORE_PIN22_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
            break;
          case 23: // PTC2, FTM0_CH1
            FTM0_C1V = cval;
            CORE_PIN23_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
            break;
          default:
            digitalWrite(pin, (val > 127) ? HIGH : LOW);
            pinMode(pin, OUTPUT);
        }
    
    }
    
    void analogWriteFrequency(uint8_t pin, uint32_t frequency)
    {
    
        uint32_t minfreq, prescale, mod;
    
        //serial_print("analogWriteFrequency: pin = ");
        //serial_phex(pin);
        //serial_print(", freq = ");
        //serial_phex32(frequency);
        //serial_print("\n");
        for (prescale = 0; prescale < 7; prescale++) {
            minfreq = (F_BUS >> 16) >> prescale;
            if (frequency > minfreq) break;
        }
        //serial_print("F_BUS = ");
        //serial_phex32(F_BUS >> prescale);
        //serial_print("\n");
        //serial_print("prescale = ");
        //serial_phex(prescale);
        //serial_print("\n");
        //mod = ((F_BUS >> prescale) / frequency) - 1;
        mod = (((F_BUS >> prescale) + (frequency >> 1)) / frequency) - 1;
        if (mod > 65535) mod = 65535;
        //serial_print("mod = ");
        //serial_phex32(mod);
        //serial_print("\n");
        if (pin == 3 || pin == 4) {
            FTM1_SC = 0;
            FTM1_CNT = 0;
            FTM1_MOD = mod;
            FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
        } else if (pin == 5 || pin == 6 || pin == 9 || pin == 10 ||
          (pin >= 20 && pin <= 23)) {
            FTM0_SC = 0;
            FTM0_CNT = 0;
            FTM0_MOD = mod;
            FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
        }
    
    }
    void digitalWrite(uint8_t pin, uint8_t val)
    {
    
        if (pin >= CORE_NUM_DIGITAL) return;
        if (*portModeRegister(pin)) {
            if (val) {
                *portSetRegister(pin) = 1;
            } else {
                *portClearRegister(pin) = 1;
            }
        } else {
            volatile uint32_t *config = portConfigRegister(pin);
            if (val) {
                // TODO use bitband for atomic read-mod-write
                *config |= (PORT_PCR_PE | PORT_PCR_PS);
                //*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
            } else {
                // TODO use bitband for atomic read-mod-write
                *config &= ~(PORT_PCR_PE);
                //*config = PORT_PCR_MUX(1);
            }
        }
    
    
    }
    
    uint8_t digitalRead(uint8_t pin)
    {
    
        if (pin >= CORE_NUM_DIGITAL) return 0;
        return *portInputRegister(pin);
    
    }
    
    
    
    void pinMode(uint8_t pin, uint8_t mode)
    {
    
        volatile uint32_t *config;
    
        if (pin >= CORE_NUM_DIGITAL) return;
        config = portConfigRegister(pin);
    
        if (mode == OUTPUT) {
            *portModeRegister(pin) = 1;
            *config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
        } else {
            *portModeRegister(pin) = 0;
            if (mode == INPUT) {
                *config = PORT_PCR_MUX(1);
            } else {
                *config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
            }
        }
    
    }
    
    // the systick interrupt is supposed to increment this at 1 kHz rate
    volatile uint32_t systick_millis_count = 0;
    
    //uint32_t systick_current, systick_count, systick_istatus;  // testing only
    
    uint32_t micros(void)
    {
    
        uint32_t count, current, istatus;
    
        __disable_irq();
        current = SYST_CVR;
        count = systick_millis_count;
        istatus = SCB_ICSR; // bit 26 indicates if systick exception pending
        __enable_irq();
         //systick_current = current;
         //systick_count = count;
         //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
        if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
        current = ((F_CPU / 1000) - 1) - current;
        return count * 1000 + current / (F_CPU / 1000000);
    
        uint32_t start = micros();
    
        if (ms > 0) {
            while (1) {
                if ((micros() - start) >= 1000) {
                    ms--;
                    if (ms == 0) return;
                    start += 1000;
                }
            }
        }