Skip to content
Snippets Groups Projects
pins_teensy.c 21.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    /* Teensyduino Core Library
     * http://www.pjrc.com/teensy/
     * Copyright (c) 2013 PJRC.COM, LLC.
     *
     * Permission is hereby granted, free of charge, to any person obtaining
     * a copy of this software and associated documentation files (the
     * "Software"), to deal in the Software without restriction, including
     * without limitation the rights to use, copy, modify, merge, publish,
     * distribute, sublicense, and/or sell copies of the Software, and to
     * permit persons to whom the Software is furnished to do so, subject to
     * the following conditions:
     *
     * 1. The above copyright notice and this permission notice shall be 
     * included in all copies or substantial portions of the Software.
     *
     * 2. If the Software is incorporated into a build system that allows 
     * selection among a list of target devices, then similar target
     * devices manufactured by PJRC.COM must be included in the list of
     * target devices and selectable in the same manner.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     * SOFTWARE.
     */
    
    #include "core_pins.h"
    #include "pins_arduino.h"
    
    #if 0
    // moved to pins_arduino.h
    struct digital_pin_bitband_and_config_table_struct {
    	volatile uint32_t *reg;
    	volatile uint32_t *config;
    };
    const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[];
    
    // compatibility macros
    #define digitalPinToPort(pin) (pin)
    #define digitalPinToBitMask(pin) (1)
    #define portOutputRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 0))
    #define portSetRegister(pin)    ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 32))
    #define portClearRegister(pin)  ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 64))
    #define portToggleRegister(pin) ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 96))
    #define portInputRegister(pin)  ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 128))
    #define portModeRegister(pin)   ((volatile uint8_t *)(digital_pin_to_info_PGM[(pin)].reg + 160))
    #define portConfigRegister(pin) ((volatile uint32_t *)(digital_pin_to_info_PGM[(pin)].config))
    #endif
    
    //#define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) )
    //#define analogInPinToBit(P) (P)
    
    #define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
    #define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
    //#define GPIO_SET_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 1)
    //#define GPIO_CLR_BIT(reg, bit) (*GPIO_BITBAND_PTR((reg), (bit)) = 0)
    
    const struct digital_pin_bitband_and_config_table_struct digital_pin_to_info_PGM[] = {
    	{GPIO_BITBAND_PTR(CORE_PIN0_PORTREG, CORE_PIN0_BIT), &CORE_PIN0_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN1_PORTREG, CORE_PIN1_BIT), &CORE_PIN1_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN2_PORTREG, CORE_PIN2_BIT), &CORE_PIN2_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN3_PORTREG, CORE_PIN3_BIT), &CORE_PIN3_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN4_PORTREG, CORE_PIN4_BIT), &CORE_PIN4_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN5_PORTREG, CORE_PIN5_BIT), &CORE_PIN5_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN6_PORTREG, CORE_PIN6_BIT), &CORE_PIN6_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN7_PORTREG, CORE_PIN7_BIT), &CORE_PIN7_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN8_PORTREG, CORE_PIN8_BIT), &CORE_PIN8_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN9_PORTREG, CORE_PIN9_BIT), &CORE_PIN9_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN10_PORTREG, CORE_PIN10_BIT), &CORE_PIN10_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN11_PORTREG, CORE_PIN11_BIT), &CORE_PIN11_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN12_PORTREG, CORE_PIN12_BIT), &CORE_PIN12_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN13_PORTREG, CORE_PIN13_BIT), &CORE_PIN13_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN14_PORTREG, CORE_PIN14_BIT), &CORE_PIN14_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN15_PORTREG, CORE_PIN15_BIT), &CORE_PIN15_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN16_PORTREG, CORE_PIN16_BIT), &CORE_PIN16_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN17_PORTREG, CORE_PIN17_BIT), &CORE_PIN17_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN18_PORTREG, CORE_PIN18_BIT), &CORE_PIN18_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN19_PORTREG, CORE_PIN19_BIT), &CORE_PIN19_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN20_PORTREG, CORE_PIN20_BIT), &CORE_PIN20_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN21_PORTREG, CORE_PIN21_BIT), &CORE_PIN21_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN22_PORTREG, CORE_PIN22_BIT), &CORE_PIN22_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN23_PORTREG, CORE_PIN23_BIT), &CORE_PIN23_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN24_PORTREG, CORE_PIN24_BIT), &CORE_PIN24_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN25_PORTREG, CORE_PIN25_BIT), &CORE_PIN25_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN26_PORTREG, CORE_PIN26_BIT), &CORE_PIN26_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN27_PORTREG, CORE_PIN27_BIT), &CORE_PIN27_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN28_PORTREG, CORE_PIN28_BIT), &CORE_PIN28_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN29_PORTREG, CORE_PIN29_BIT), &CORE_PIN29_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN30_PORTREG, CORE_PIN30_BIT), &CORE_PIN30_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN31_PORTREG, CORE_PIN31_BIT), &CORE_PIN31_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN32_PORTREG, CORE_PIN32_BIT), &CORE_PIN32_CONFIG},
    	{GPIO_BITBAND_PTR(CORE_PIN33_PORTREG, CORE_PIN33_BIT), &CORE_PIN33_CONFIG}
    };
    
    
    
    
    typedef void (*voidFuncPtr)(void);
    volatile static voidFuncPtr intFunc[CORE_NUM_DIGITAL];
    
    void init_pin_interrupts(void)
    {
    	//SIM_SCGC5 = 0x00043F82;		// clocks active to all GPIO
    	NVIC_ENABLE_IRQ(IRQ_PORTA);
    	NVIC_ENABLE_IRQ(IRQ_PORTB);
    	NVIC_ENABLE_IRQ(IRQ_PORTC);
    	NVIC_ENABLE_IRQ(IRQ_PORTD);
    	NVIC_ENABLE_IRQ(IRQ_PORTE);
    	// TODO: maybe these should be set to a lower priority
    	// so if the user puts lots of slow code on attachInterrupt
    	// fast interrupts will still be serviced quickly?
    }
    
    void attachInterrupt(uint8_t pin, void (*function)(void), int mode)
    {
    	volatile uint32_t *config;
    	uint32_t cfg, mask;
    
    	if (pin >= CORE_NUM_DIGITAL) return;
    	switch (mode) {
    	  case CHANGE:	mask = 0x0B; break;
    	  case RISING:	mask = 0x09; break;
    	  case FALLING:	mask = 0x0A; break;
    	  case LOW:	mask = 0x08; break;
    	  case HIGH:	mask = 0x0C; break;
    	  default: return;
    	}
    	mask = (mask << 16) | 0x01000000;
    	config = portConfigRegister(pin);
    
    	__disable_irq();
    	cfg = *config;
    	cfg &= ~0x000F0000;		// disable any previous interrupt
    	*config = cfg;
    	intFunc[pin] = function;	// set the function pointer
    	cfg |= mask;
    	*config = cfg;			// enable the new interrupt
    	__enable_irq();
    }
    
    void detachInterrupt(uint8_t pin)
    {
    	volatile uint32_t *config;
    
    	config = portConfigRegister(pin);
    	__disable_irq();
    	*config = ((*config & ~0x000F0000) | 0x01000000);
    	intFunc[pin] = NULL;
    	__enable_irq();
    }
    
    
    void porta_isr(void)
    {
    	uint32_t isfr = PORTA_ISFR;
    	PORTA_ISFR = isfr;
    	if ((isfr & CORE_PIN3_BITMASK) && intFunc[3]) intFunc[3]();
    	if ((isfr & CORE_PIN4_BITMASK) && intFunc[4]) intFunc[4]();
    	if ((isfr & CORE_PIN24_BITMASK) && intFunc[24]) intFunc[24]();
    	if ((isfr & CORE_PIN33_BITMASK) && intFunc[33]) intFunc[33]();
    }
    
    void portb_isr(void)
    {
    	uint32_t isfr = PORTB_ISFR;
    	PORTB_ISFR = isfr;
    	if ((isfr & CORE_PIN0_BITMASK) && intFunc[0]) intFunc[0]();
    	if ((isfr & CORE_PIN1_BITMASK) && intFunc[1]) intFunc[1]();
    	if ((isfr & CORE_PIN16_BITMASK) && intFunc[16]) intFunc[16]();
    	if ((isfr & CORE_PIN17_BITMASK) && intFunc[17]) intFunc[17]();
    	if ((isfr & CORE_PIN18_BITMASK) && intFunc[18]) intFunc[18]();
    	if ((isfr & CORE_PIN19_BITMASK) && intFunc[19]) intFunc[19]();
    	if ((isfr & CORE_PIN25_BITMASK) && intFunc[25]) intFunc[25]();
    	if ((isfr & CORE_PIN32_BITMASK) && intFunc[32]) intFunc[32]();
    }
    
    void portc_isr(void)
    {
    	// TODO: these are inefficent.  Use CLZ somehow....
    	uint32_t isfr = PORTC_ISFR;
    	PORTC_ISFR = isfr;
    	if ((isfr & CORE_PIN9_BITMASK) && intFunc[9]) intFunc[9]();
    	if ((isfr & CORE_PIN10_BITMASK) && intFunc[10]) intFunc[10]();
    	if ((isfr & CORE_PIN11_BITMASK) && intFunc[11]) intFunc[11]();
    	if ((isfr & CORE_PIN12_BITMASK) && intFunc[12]) intFunc[12]();
    	if ((isfr & CORE_PIN13_BITMASK) && intFunc[13]) intFunc[13]();
    	if ((isfr & CORE_PIN15_BITMASK) && intFunc[15]) intFunc[15]();
    	if ((isfr & CORE_PIN22_BITMASK) && intFunc[22]) intFunc[22]();
    	if ((isfr & CORE_PIN23_BITMASK) && intFunc[23]) intFunc[23]();
    	if ((isfr & CORE_PIN27_BITMASK) && intFunc[27]) intFunc[27]();
    	if ((isfr & CORE_PIN28_BITMASK) && intFunc[28]) intFunc[28]();
    	if ((isfr & CORE_PIN29_BITMASK) && intFunc[29]) intFunc[29]();
    	if ((isfr & CORE_PIN30_BITMASK) && intFunc[30]) intFunc[30]();
    }
    
    void portd_isr(void)
    {
    	uint32_t isfr = PORTD_ISFR;
    	PORTD_ISFR = isfr;
    	if ((isfr & CORE_PIN2_BITMASK) && intFunc[2]) intFunc[2]();
    	if ((isfr & CORE_PIN5_BITMASK) && intFunc[5]) intFunc[5]();
    	if ((isfr & CORE_PIN6_BITMASK) && intFunc[6]) intFunc[6]();
    	if ((isfr & CORE_PIN7_BITMASK) && intFunc[7]) intFunc[7]();
    	if ((isfr & CORE_PIN8_BITMASK) && intFunc[8]) intFunc[8]();
    	if ((isfr & CORE_PIN14_BITMASK) && intFunc[14]) intFunc[14]();
    	if ((isfr & CORE_PIN20_BITMASK) && intFunc[20]) intFunc[20]();
    	if ((isfr & CORE_PIN21_BITMASK) && intFunc[21]) intFunc[21]();
    }
    
    void porte_isr(void)
    {
    	uint32_t isfr = PORTE_ISFR;
    	PORTE_ISFR = isfr;
    	if ((isfr & CORE_PIN26_BITMASK) && intFunc[26]) intFunc[26]();
    	if ((isfr & CORE_PIN31_BITMASK) && intFunc[31]) intFunc[31]();
    }
    
    
    
    
    unsigned long rtc_get(void)
    {
    	return RTC_TSR;
    }
    
    void rtc_set(unsigned long t)
    {
    	RTC_SR = 0;
    	RTC_TPR = 0;
    	RTC_TSR = t;
    	RTC_SR = RTC_SR_TCE;
    }
    
    
    // adjust is the amount of crystal error to compensate, 1 = 0.1192 ppm
    // For example, adjust = -100 is slows the clock by 11.92 ppm
    //
    void rtc_compensate(int adjust)
    {
    	uint32_t comp, interval, tcr;
    
    	// This simple approach tries to maximize the interval.
    	// Perhaps minimizing TCR would be better, so the
    	// compensation is distributed more evenly across
    	// many seconds, rather than saving it all up and then
    	// altering one second up to +/- 0.38%
    	if (adjust >= 0) {
    		comp = adjust;
    		interval = 256;
    		while (1) {
    			tcr = comp * interval;
    			if (tcr < 128*256) break;
    			if (--interval == 1) break;
    		}
    		tcr = tcr >> 8;
    	} else {
    		comp = -adjust;
    		interval = 256;
    		while (1) {
    			tcr = comp * interval;
    			if (tcr < 129*256) break;
    			if (--interval == 1) break;
    		}
    		tcr = tcr >> 8;
    		tcr = 256 - tcr;
    	}
    	RTC_TCR = ((interval - 1) << 8) | tcr;
    }
    
    #if 0
    // TODO: build system should define this
    // so RTC is automatically initialized to approx correct time
    // at least when the program begins running right after upload
    #ifndef TIME_T
    #define TIME_T 1350160272
    #endif
    
    void init_rtc(void)
    {
    	serial_print("init_rtc\n");
    	//SIM_SCGC6 |= SIM_SCGC6_RTC;
    
    	// enable the RTC crystal oscillator, for approx 12pf crystal
    	if (!(RTC_CR & RTC_CR_OSCE)) {
    		serial_print("start RTC oscillator\n");
    		RTC_SR = 0;
    		RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
    	}
    	// should wait for crystal to stabilize.....
    
    	serial_print("SR=");
    	serial_phex32(RTC_SR);
    	serial_print("\n");
    	serial_print("CR=");
    	serial_phex32(RTC_CR);
    	serial_print("\n");
    	serial_print("TSR=");
    	serial_phex32(RTC_TSR);
    	serial_print("\n");
    	serial_print("TCR=");
    	serial_phex32(RTC_TCR);
    	serial_print("\n");
    
    	if (RTC_SR & RTC_SR_TIF) {
    		// enable the RTC
    		RTC_SR = 0;
    		RTC_TPR = 0;
    		RTC_TSR = TIME_T;
    		RTC_SR = RTC_SR_TCE;
    	}
    }
    #endif
    
    extern void usb_init(void);
    
    
    // create a default PWM at the same 488.28 Hz as Arduino Uno
    #if F_BUS == 48000000
    #define DEFAULT_FTM_MOD (49152 - 1)
    #define DEFAULT_FTM_PRESCALE 1
    #else
    #define DEFAULT_FTM_MOD (49152 - 1)
    #define DEFAULT_FTM_PRESCALE 0
    #endif
    
    //void init_pins(void)
    void _init_Teensyduino_internal_(void)
    {
    	init_pin_interrupts();
    
    	//SIM_SCGC6 |= SIM_SCGC6_FTM0;	// TODO: use bitband for atomic read-mod-write
    	//SIM_SCGC6 |= SIM_SCGC6_FTM1;
    	FTM0_CNT = 0;
    	FTM0_MOD = DEFAULT_FTM_MOD;
    	FTM0_C0SC = 0x28; // MSnB:MSnA = 10, ELSnB:ELSnA = 10
    	FTM0_C1SC = 0x28;
    	FTM0_C2SC = 0x28;
    	FTM0_C3SC = 0x28;
    	FTM0_C4SC = 0x28;
    	FTM0_C5SC = 0x28;
    	FTM0_C6SC = 0x28;
    	FTM0_C7SC = 0x28;
    	FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
    	FTM1_CNT = 0;
    	FTM1_MOD = DEFAULT_FTM_MOD;
    	FTM1_C0SC = 0x28;
    	FTM1_C1SC = 0x28;
    	FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(DEFAULT_FTM_PRESCALE);
    
    	usb_init();
    }
    
    
    
    // SOPT4 is SIM select clocks?
    // FTM is clocked by the bus clock, either 24 or 48 MHz
    // input capture can be FTM1_CH0, CMP0 or CMP1 or USB start of frame
    // 24 MHz with reload 49152 to match Arduino's speed = 488.28125 Hz
    
    static uint8_t analog_write_res = 8;
    
    void analogWrite(uint8_t pin, int val)
    {
    	uint32_t cval, max;
    
    	max = 1 << analog_write_res;
    	if (val <= 0) {
    		digitalWrite(pin, LOW);
    		pinMode(pin, OUTPUT);	// TODO: implement OUTPUT_LOW
    		return;
    	} else if (val >= max) {
    		digitalWrite(pin, HIGH);
    		pinMode(pin, OUTPUT);	// TODO: implement OUTPUT_HIGH
    		return;
    	}
    
    	//serial_print("analogWrite\n");
    	//serial_print("val = ");
    	//serial_phex32(val);
    	//serial_print("\n");
    	//serial_print("analog_write_res = ");
    	//serial_phex(analog_write_res);
    	//serial_print("\n");
    	if (pin == 3 || pin == 4) {
    		cval = ((uint32_t)val * (uint32_t)(FTM1_MOD + 1)) >> analog_write_res;
    		//serial_print("FTM1_MOD = ");
    		//serial_phex32(FTM1_MOD);
    		//serial_print("\n");
    	} else {
    		cval = ((uint32_t)val * (uint32_t)(FTM0_MOD + 1)) >> analog_write_res;
    		//serial_print("FTM0_MOD = ");
    		//serial_phex32(FTM0_MOD);
    		//serial_print("\n");
    	}
    	//serial_print("cval = ");
    	//serial_phex32(cval);
    	//serial_print("\n");
    	switch (pin) {
    	  case 3: // PTA12, FTM1_CH0
    		FTM1_C0V = cval;
    		CORE_PIN3_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
    		break;
    	  case 4: // PTA13, FTM1_CH1
    		FTM1_C1V = cval;
    		CORE_PIN4_CONFIG = PORT_PCR_MUX(3) | PORT_PCR_DSE | PORT_PCR_SRE;
    		break;
    	  case 5: // PTD7, FTM0_CH7
    		FTM0_C7V = cval;
    		CORE_PIN5_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
    		break;
    	  case 6: // PTD4, FTM0_CH4
    		FTM0_C4V = cval;
    		CORE_PIN6_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
    		break;
    	  case 9: // PTC3, FTM0_CH2
    		FTM0_C2V = cval;
    		CORE_PIN9_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
    		break;
    	  case 10: // PTC4, FTM0_CH3
    		FTM0_C3V = cval;
    		CORE_PIN10_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
    		break;
    	  case 20: // PTD5, FTM0_CH5
    		FTM0_C5V = cval;
    		CORE_PIN20_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
    		break;
    	  case 21: // PTD6, FTM0_CH6
    		FTM0_C6V = cval;
    		CORE_PIN21_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
    		break;
    	  case 22: // PTC1, FTM0_CH0
    		FTM0_C0V = cval;
    		CORE_PIN22_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
    		break;
    	  case 23: // PTC2, FTM0_CH1
    		FTM0_C1V = cval;
    		CORE_PIN23_CONFIG = PORT_PCR_MUX(4) | PORT_PCR_DSE | PORT_PCR_SRE;
    		break;
    	  default:
    		digitalWrite(pin, (val > 127) ? HIGH : LOW);
    		pinMode(pin, OUTPUT);
    	}
    }
    
    void analogWriteRes(uint32_t bits)
    {
    	if (bits < 1) {
    		bits = 1;
    	} else if (bits > 16) {
    		bits = 16;
    	}
    	analog_write_res = bits;
    }
    
    void analogWriteFrequency(uint8_t pin, uint32_t frequency)
    {
    	uint32_t minfreq, prescale, mod;
    
    	//serial_print("analogWriteFrequency: pin = ");
    	//serial_phex(pin);
    	//serial_print(", freq = ");
    	//serial_phex32(frequency);
    	//serial_print("\n");
    	for (prescale = 0; prescale < 7; prescale++) {
    		minfreq = (F_BUS >> 16) >> prescale;
    		if (frequency > minfreq) break;
    	}
    	//serial_print("F_BUS = ");
    	//serial_phex32(F_BUS >> prescale);
    	//serial_print("\n");
    	//serial_print("prescale = ");
    	//serial_phex(prescale);
    	//serial_print("\n");
    	//mod = ((F_BUS >> prescale) / frequency) - 1;
    	mod = (((F_BUS >> prescale) + (frequency >> 1)) / frequency) - 1;
    	if (mod > 65535) mod = 65535;
    	//serial_print("mod = ");
    	//serial_phex32(mod);
    	//serial_print("\n");
    	if (pin == 3 || pin == 4) {
    		FTM1_SC = 0;
    		FTM1_CNT = 0;
    		FTM1_MOD = mod;
    		FTM1_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
    	} else if (pin == 5 || pin == 6 || pin == 9 || pin == 10 ||
    	  (pin >= 20 && pin <= 23)) {
    		FTM0_SC = 0;
    		FTM0_CNT = 0;
    		FTM0_MOD = mod;
    		FTM0_SC = FTM_SC_CLKS(1) | FTM_SC_PS(prescale);
    	}
    }
    
    
    
    
    // TODO: startup code needs to initialize all pins to GPIO mode, input by default
    
    void digitalWrite(uint8_t pin, uint8_t val)
    {
    	if (pin >= CORE_NUM_DIGITAL) return;
    	if (*portModeRegister(pin)) {
    		if (val) {
    			*portSetRegister(pin) = 1;
    		} else {
    			*portClearRegister(pin) = 1;
    		}
    	} else {
    		volatile uint32_t *config = portConfigRegister(pin);
    		if (val) {
    			// TODO use bitband for atomic read-mod-write
    			*config |= (PORT_PCR_PE | PORT_PCR_PS);
    			//*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS;
    		} else {
    			// TODO use bitband for atomic read-mod-write
    			*config &= ~(PORT_PCR_PE);
    			//*config = PORT_PCR_MUX(1);
    		}
    	}
    
    }
    
    uint8_t digitalRead(uint8_t pin)
    {
    	if (pin >= CORE_NUM_DIGITAL) return 0;
    	return *portInputRegister(pin);
    }
    
    
    
    void pinMode(uint8_t pin, uint8_t mode)
    {
    	volatile uint32_t *config;
    
    	if (pin >= CORE_NUM_DIGITAL) return;
    	config = portConfigRegister(pin);
    
    	if (mode == OUTPUT) {
    		*portModeRegister(pin) = 1;
    		*config = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
    	} else {
    		*portModeRegister(pin) = 0;
    		if (mode == INPUT) {
    			*config = PORT_PCR_MUX(1);
    		} else {
    			*config = PORT_PCR_MUX(1) | PORT_PCR_PE | PORT_PCR_PS; // pullup
    		}
    	}
    }
    
    
    void _shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t value)
    {
            if (bitOrder == LSBFIRST) {
                    shiftOut_lsbFirst(dataPin, clockPin, value);
            } else {
                    shiftOut_msbFirst(dataPin, clockPin, value);
            }
    }
    
    void shiftOut_lsbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
    {
            uint8_t mask;
            for (mask=0x01; mask; mask <<= 1) {
                    digitalWrite(dataPin, value & mask);
                    digitalWrite(clockPin, HIGH);
                    digitalWrite(clockPin, LOW);
            }
    }
    
    void shiftOut_msbFirst(uint8_t dataPin, uint8_t clockPin, uint8_t value)
    {
            uint8_t mask;
            for (mask=0x80; mask; mask >>= 1) {
                    digitalWrite(dataPin, value & mask);
                    digitalWrite(clockPin, HIGH);
                    digitalWrite(clockPin, LOW);
            }
    }
    
    uint8_t _shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder)
    {
            if (bitOrder == LSBFIRST) {
                    return shiftIn_lsbFirst(dataPin, clockPin);
            } else {
                    return shiftIn_msbFirst(dataPin, clockPin);
            }
    }
    
    uint8_t shiftIn_lsbFirst(uint8_t dataPin, uint8_t clockPin)
    {
            uint8_t mask, value=0;
            for (mask=0x01; mask; mask <<= 1) {
                    digitalWrite(clockPin, HIGH);
                    if (digitalRead(dataPin)) value |= mask;
                    digitalWrite(clockPin, LOW);
            }
            return value;
    }
    
    uint8_t shiftIn_msbFirst(uint8_t dataPin, uint8_t clockPin)
    {
            uint8_t mask, value=0;
            for (mask=0x80; mask; mask >>= 1) {
                    digitalWrite(clockPin, HIGH);
                    if (digitalRead(dataPin)) value |= mask;
                    digitalWrite(clockPin, LOW);
            }
            return value;
    }
    
    
    
    // the systick interrupt is supposed to increment this at 1 kHz rate
    volatile uint32_t systick_millis_count = 0;
    
    //uint32_t systick_current, systick_count, systick_istatus;  // testing only
    
    uint32_t micros(void)
    {
    	uint32_t count, current, istatus;
    
    	__disable_irq();
    	current = SYST_CVR;
    	count = systick_millis_count;
    	istatus = SCB_ICSR;	// bit 26 indicates if systick exception pending
    	__enable_irq();
    	 //systick_current = current;
    	 //systick_count = count;
    	 //systick_istatus = istatus & SCB_ICSR_PENDSTSET ? 1 : 0;
    	if ((istatus & SCB_ICSR_PENDSTSET) && current > 50) count++;
    	current = ((F_CPU / 1000) - 1) - current;
    	return count * 1000 + current / (F_CPU / 1000000);
    }
    
    void delay(uint32_t ms)
    {
    	uint32_t start = micros();
    
    	if (ms > 0) {
    		while (1) {
    			if ((micros() - start) >= 1000) {
    				ms--;
    				if (ms == 0) return;
    				start += 1000;
    			}
    			yield();
    		}
    	}
    }
    
    #if F_CPU == 96000000
    #define PULSEIN_LOOPS_PER_USEC 14
    #elif F_CPU == 48000000
    #define PULSEIN_LOOPS_PER_USEC 7
    #elif F_CPU == 24000000
    #define PULSEIN_LOOPS_PER_USEC 4
    #endif
    
    
    uint32_t pulseIn_high(volatile uint8_t *reg, uint32_t timeout)
    {
    	uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
    	uint32_t usec_start, usec_stop;
    	
    	// wait for any previous pulse to end
    	while (*reg) {
    		if (--timeout_count == 0) return 0;
    	}
    	// wait for the pulse to start
    	while (!*reg) {
    		if (--timeout_count == 0) return 0;
    	}
    	usec_start = micros();
    	// wait for the pulse to stop
    	while (*reg) {
    		if (--timeout_count == 0) return 0;
    	}
    	usec_stop = micros();
    	return usec_stop - usec_start;
    }
    
    uint32_t pulseIn_low(volatile uint8_t *reg, uint32_t timeout)
    {
    	uint32_t timeout_count = timeout * PULSEIN_LOOPS_PER_USEC;
    	uint32_t usec_start, usec_stop;
    	
    	// wait for any previous pulse to end
    	while (!*reg) {
    		if (--timeout_count == 0) return 0;
    	}
    	// wait for the pulse to start
    	while (*reg) {
    		if (--timeout_count == 0) return 0;
    	}
    	usec_start = micros();
    	// wait for the pulse to stop
    	while (!*reg) {
    		if (--timeout_count == 0) return 0;
    	}
    	usec_stop = micros();
    	return usec_stop - usec_start;
    }
    
    // TODO: an inline version should handle the common case where state is const
    uint32_t pulseIn(uint8_t pin, uint8_t state, uint32_t timeout)
    {
    	if (pin >= CORE_NUM_DIGITAL) return 0;
    	if (state) return pulseIn_high(portInputRegister(pin), timeout);
    	return pulseIn_low(portInputRegister(pin), timeout);;
    }