Newer
Older
/*
* Electrical test for Fadecandy boards
*
* Copyright (c) 2013 Micah Elizabeth Scott
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <Arduino.h>
#include "electrical_test.h"
#include "testjig.h"
#include "arm_kinetis_reg.h"
float ElectricalTest::analogVolts(int pin)
{
// Analog input and voltage divider constants
const float reference = 1.2;
const float dividerA = 1000; // Input to ground
const float dividerB = 6800; // Input to signal
const int adcMax = 1023;
const float scale = (reference / adcMax) * ((dividerA + dividerB) / dividerA);
return analogRead(pin) * scale;
}
bool ElectricalTest::analogThreshold(int pin, float nominal, float tolerance)
{
// Measure an analog input, and verify it's close enough to expected values.
return analogThresholdFromSample(analogVolts(pin), pin, nominal, tolerance);
}
bool ElectricalTest::analogThresholdFromSample(float volts, int pin, float nominal, float tolerance)
{
float lower = nominal - tolerance;
float upper = nominal + tolerance;
if (volts < lower || volts > upper) {
"ETEST: Analog value %d outside reference range! "
"value = %.2fv, ref = %.2fv +/- %.2fv",
pin, volts, nominal, tolerance);
return false;
}
return true;
}
bool ElectricalTest::testOutputPattern(uint8_t bits)
{
// Set the target's 8-bit output port to the given value, and check all analog values
// Write the port all at once
if (!target.digitalWritePort(outPin(0), bits))
return false;
// Check power supply each time
if (!analogThreshold(analogTarget33vPin, 3.3)) return false;
if (!analogThreshold(analogTargetVUsbPin, 5.0)) return false;
// Check all data signal levels
for (unsigned n = 0; n < 8; n++) {
bool bit = (bits >> n) & 1;
if (!analogThreshold(n, bit ? 5.0 : 0.0))
return false;
}
return true;
}
bool ElectricalTest::testAllOutputPatterns()
{
target.log(logLevel, "ETEST: Testing data output patterns");
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// All on, all off
if (!testOutputPattern(0x00)) return false;
if (!testOutputPattern(0xFF)) return false;
// One bit set
for (unsigned n = 0; n < 8; n++) {
if (!testOutputPattern(1 << n))
return false;
}
// One bit missing
for (unsigned n = 0; n < 8; n++) {
if (!testOutputPattern(0xFF ^ (1 << n)))
return false;
}
// Leave all outputs on
return testOutputPattern(0xFF);
}
bool ElectricalTest::initTarget()
{
// Target setup that's needed only once per test run
// Output pin directions
for (unsigned n = 0; n < 8; n++) {
if (!target.pinMode(outPin(n), OUTPUT))
return false;
}
// Disable target USB USB pull-ups
if (!target.usbSetPullup(false))
return false;
Micah Elizabeth Scott
committed
void ElectricalTest::setPowerSupplyVoltage(float volts)
{
// Set the variable power supply voltage. Usable range is from 0V to system VUSB.
int pwm = constrain(volts * (255 / powerSupplyFullScaleVoltage), 0, 255);
pinMode(powerPWMPin, OUTPUT);
analogWriteFrequency(powerPWMPin, 1000000);
analogWrite(powerPWMPin, pwm);
Micah Elizabeth Scott
committed
/*
* Time for the PSU to settle. Our testjig's power supply settles very
* fast (<1ms), but the capacitors on the target need more time to charge.
*/
Micah Elizabeth Scott
committed
}
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
bool ElectricalTest::testBoostConverter()
{
target.log(logLevel, "ETEST: Testing boost converter");
// Test over a range of input voltages
for (float supply = 5.0; supply > 3.5; supply -= 0.2) {
// Turn all outputs on
if (!target.digitalWritePort(outPin(0), 0xFF))
return false;
// Adjust power supply
setPowerSupplyVoltage(supply);
// Collect all relevant voltages
float vusb = analogVolts(analogTargetVUsbPin);
float vcc = analogVolts(analogTarget33vPin);
float v0 = analogVolts(0);
float v1 = analogVolts(1);
float v2 = analogVolts(2);
float v3 = analogVolts(3);
float v4 = analogVolts(4);
float v5 = analogVolts(5);
float v6 = analogVolts(6);
float v7 = analogVolts(7);
target.log(logLevel,
" Supply at %.1fv : Target vusb=%.2fv vcc=%.2fv outputs=["
"%.2fv %.2fv %.2fv %.2fv %.2fv %.2fv %.2fv %.2fv]",
supply, vusb, vcc, v0, v1, v2, v3, v4, v5, v6, v7);
if (!analogThresholdFromSample(vusb, analogTargetVUsbPin, supply)) return false;
if (!analogThresholdFromSample(vcc, analogTarget33vPin, 3.3)) return false;
if (!analogThresholdFromSample(v0, 0, 5.0)) return false;
if (!analogThresholdFromSample(v1, 1, 5.0)) return false;
if (!analogThresholdFromSample(v2, 2, 5.0)) return false;
if (!analogThresholdFromSample(v3, 3, 5.0)) return false;
if (!analogThresholdFromSample(v4, 4, 5.0)) return false;
if (!analogThresholdFromSample(v5, 5, 5.0)) return false;
if (!analogThresholdFromSample(v6, 6, 5.0)) return false;
if (!analogThresholdFromSample(v7, 7, 5.0)) return false;
// Also make sure we can turn outputs off properly
if (!target.digitalWritePort(outPin(0), 0x00))
return false;
for (unsigned n = 0; n < 8; n++)
if (!analogThreshold(n, 0))
return false;
}
// Done! Go back to a nominal 5V supply. We'll want this to be stable for flash programming.
setPowerSupplyVoltage(5.0);
Micah Elizabeth Scott
committed
void ElectricalTest::powerOff()
{
setPowerSupplyVoltage(0);
}
Micah Elizabeth Scott
committed
{
target.log(logLevel, "ETEST: Enabling power supply");
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
const float volts = 5.0;
setPowerSupplyVoltage(volts);
return analogThreshold(analogTargetVUsbPin, volts);
}
bool ElectricalTest::testHighZ(int pin)
{
// Test a pin to make sure it's high-impedance, by using its parasitic capacitance
for (unsigned i = 0; i < 10; i++) {
pinMode(pin, OUTPUT);
digitalWrite(pin, i & 1);
pinMode(pin, INPUT);
if (digitalRead(pin) != (i & 1))
return false;
}
return true;
}
bool ElectricalTest::testPull(int pin, bool state)
{
// Test a pin for a pull-up/down resistor
for (unsigned i = 0; i < 10; i++) {
pinMode(pin, OUTPUT);
digitalWrite(pin, i & 1);
pinMode(pin, INPUT);
if (digitalRead(pin) != state)
return false;
}
return true;
}
bool ElectricalTest::testUSBConnections()
{
target.log(logLevel, "ETEST: Testing USB connections");
// Run this test a few times
for (unsigned iter = 0; iter < 4; iter++) {
// Start with pull-up disabled
if (!target.usbSetPullup(false))
return false;
// Test both USB ground connections
pinMode(usbShieldGroundPin, INPUT_PULLUP);
pinMode(usbSignalGroundPin, INPUT_PULLUP);
if (digitalRead(usbShieldGroundPin) != LOW) {
target.log(LOG_ERROR, "ETEST: Faulty USB shield ground");
return false;
}
if (digitalRead(usbSignalGroundPin) != LOW) {
target.log(LOG_ERROR, "ETEST: Faulty USB signal ground");
return false;
}
// Test for a high-impedance USB D+ and D- by charging and discharging parasitic capacitance
if (!testHighZ(usbDMinusPin)) {
target.log(LOG_ERROR, "ETEST: Fault on USB D-, expected High-Z");
return false;
}
if (!testHighZ(usbDPlusPin)) {
target.log(LOG_ERROR, "ETEST: Fault on USB D+, expected High-Z");
return false;
}
// Turn on USB pull-up on D+
if (!target.usbSetPullup(true))
return false;
// Now D+ should be pulled up, and D- needs to still be high-Z
if (!testPull(usbDPlusPin, HIGH)) {
target.log(LOG_ERROR, "ETEST: Fault on USB D+, no pull-up found");
return false;
}
if (!testHighZ(usbDMinusPin)) {
target.log(LOG_ERROR, "ETEST: Fault on USB D-, expected High-Z. Possible short to D+");
return false;
}
}
return true;
Micah Elizabeth Scott
committed
}
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
bool ElectricalTest::testSerialConnections()
{
target.log(logLevel, "ETEST: Testing serial connections");
// This tests serial RX, TX, and the DMA loopback, which are all adjacent.
target.pinMode(target.PTB0, OUTPUT);
target.pinMode(target.PTC0, INPUT);
for (unsigned i = 0; i < 10; i++) {
target.digitalWrite(target.PTB0, i&1);
if (target.digitalRead(target.PTC0) != (i&1)) {
target.log(LOG_ERROR, "ETEST: Bad connection between DMA loopback pins PTB0 and PTC0");
return false;
}
}
// Leave that connection driven, check for shorts to serial RX/TX
if (!testHighZ(fcTXPin)) {
target.log(LOG_ERROR, "ETEST: Fault on serial TX pin, expected High-Z");
return false;
}
if (!testHighZ(fcRXPin)) {
target.log(LOG_ERROR, "ETEST: Fault on serial RX pin, expected High-Z");
return false;
}
// Drive serial TX, check for results and make sure there's no short to RX
target.pinMode(target.PTB17, OUTPUT);
for (unsigned i = 0; i < 10; i++) {
target.digitalWrite(target.PTB17, i&1);
if (digitalRead(fcTXPin) != (i&1)) {
target.log(LOG_ERROR, "ETEST: Bad connection on serial TX pin");
return false;
}
}
if (!testHighZ(fcRXPin)) {
target.log(LOG_ERROR, "ETEST: Short between serial TX and RX");
return false;
}
// Drive RX, and test that
pinMode(fcRXPin, OUTPUT);
target.pinMode(target.PTB16, INPUT);
for (unsigned i = 0; i < 10; i++) {
digitalWrite(fcRXPin, i&1);
if (target.digitalRead(target.PTB16) != (i&1)) {
target.log(LOG_ERROR, "ETEST: Bad connection on serial RX pin");
return false;
}
}
return true;
}
bool ElectricalTest::runAll()
{
target.log(logLevel, "ETEST: Beginning electrical test");
if (!initTarget())
return false;
// USB tests
if (!testUSBConnections())
return false;
// Output patterns
if (!testAllOutputPatterns())
return false;
// Test serial connections, and the adjacent DMA loopback
if (!testSerialConnections())
return false;
// Now try dialing down the power supply voltage, and make sure it still works
if (!testBoostConverter())
return false;
target.log(logLevel, "ETEST: Successfully completed electrical test");
return true;
}