Skip to content
Snippets Groups Projects
arm_math.h 243 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* ----------------------------------------------------------------------   
     * Copyright (C) 2010-2011 ARM Limited. All rights reserved.   
     *   
     * $Date:        15. February 2012  
    
     * $Revision:   V1.1.0  
    
     * Project:       CMSIS DSP Library   
     * Title:       arm_math.h
    
     * Description:  Public header file for CMSIS DSP Library
    
     *   
     * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
     *  
     * Version 1.1.0 2012/02/15 
     *    Updated with more optimizations, bug fixes and minor API changes.  
     *  
     * Version 1.0.10 2011/7/15 
     *    Big Endian support added and Merged M0 and M3/M4 Source code.  
     *   
     * Version 1.0.3 2010/11/29  
     *    Re-organized the CMSIS folders and updated documentation.   
     *    
     * Version 1.0.2 2010/11/11   
     *    Documentation updated.    
     *   
     * Version 1.0.1 2010/10/05    
     *    Production release and review comments incorporated.   
     *   
     * Version 1.0.0 2010/09/20    
     *    Production release and review comments incorporated.   
     * -------------------------------------------------------------------- */
    
    /**
       \mainpage CMSIS DSP Software Library
       *
       * <b>Introduction</b>
       *
       * This user manual describes the CMSIS DSP software library, 
       * a suite of common signal processing functions for use on Cortex-M processor based devices.
       *
       * The library is divided into a number of functions each covering a specific category:  
       * - Basic math functions
       * - Fast math functions
       * - Complex math functions
       * - Filters
       * - Matrix functions
       * - Transforms
       * - Motor control functions
       * - Statistical functions
       * - Support functions
       * - Interpolation functions
       *
       * The library has separate functions for operating on 8-bit integers, 16-bit integers,
       * 32-bit integer and 32-bit floating-point values. 
       *
       * <b>Pre-processor Macros</b> 
       * 
       * Each library project have differant pre-processor macros. 
       * 
       * - UNALIGNED_SUPPORT_DISABLE: 
       * 
       * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access    
       * 
       * - ARM_MATH_BIG_ENDIAN: 
       * 
       * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. 
       * 
       * - ARM_MATH_MATRIX_CHECK: 
       * 
       * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices 
       * 
       * - ARM_MATH_ROUNDING: 
       * 
       * Define macro ARM_MATH_ROUNDING for rounding on support functions
       *
       * - ARM_MATH_CMx:
       *
       * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
       * and ARM_MATH_CM0 for building library on cortex-M0 target.
       * 
       * - __FPU_PRESENT:
       *
       * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries 
       *
       * <b>Toolchain Support</b>
       *
       * The library has been developed and tested with MDK-ARM version 4.23. 
       * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
       *
       * <b>Using the Library</b>
       *
       * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
       * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
       * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
       * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
       * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
       * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
       * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
       * - arm_cortexM0l_math.lib (Little endian on Cortex-M0)
       * - arm_cortexM0b_math.lib (Big endian on Cortex-M3)
       *
       * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
       * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single 
       * public header file <code> arm_math.h</code> for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. 
       * Define the appropriate pre processor MACRO ARM_MATH_CM4 or  ARM_MATH_CM3 or 
       * ARM_MATH_CM0 depending on the target processor in the application.
       *
       * <b>Examples</b>
       *
       * The library ships with a number of examples which demonstrate how to use the library functions.
       *
       * <b>Building the Library</b>
       *
       * The library installer contains project files to re build libraries on MDK Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
       * - arm_cortexM0b_math.uvproj
       * - arm_cortexM0l_math.uvproj
       * - arm_cortexM3b_math.uvproj
       * - arm_cortexM3l_math.uvproj  
       * - arm_cortexM4b_math.uvproj
       * - arm_cortexM4l_math.uvproj
       * - arm_cortexM4bf_math.uvproj
       * - arm_cortexM4lf_math.uvproj
       *
       *
       * The project can be built by opening the appropriate project in MDK-ARM 4.23 chain and defining the optional pre processor MACROs detailed above.
       *
       * <b>Copyright Notice</b>
       *
       * Copyright (C) 2010 ARM Limited. All rights reserved.
       */
    
    
    /**
     * @defgroup groupMath Basic Math Functions
     */
    
    /**
     * @defgroup groupFastMath Fast Math Functions
     * This set of functions provides a fast approximation to sine, cosine, and square root.
     * As compared to most of the other functions in the CMSIS math library, the fast math functions
     * operate on individual values and not arrays.
     * There are separate functions for Q15, Q31, and floating-point data.
     *
     */
    
    /**
     * @defgroup groupCmplxMath Complex Math Functions
     * This set of functions operates on complex data vectors.
     * The data in the complex arrays is stored in an interleaved fashion
     * (real, imag, real, imag, ...).
     * In the API functions, the number of samples in a complex array refers
     * to the number of complex values; the array contains twice this number of
     * real values.
     */
    
    /**
     * @defgroup groupFilters Filtering Functions
     */
    
    /**
     * @defgroup groupMatrix Matrix Functions
     *
     * This set of functions provides basic matrix math operations.
     * The functions operate on matrix data structures.  For example,
     * the type
     * definition for the floating-point matrix structure is shown
     * below:
     * <pre>
     *     typedef struct
     *     {
     *       uint16_t numRows;     // number of rows of the matrix.
     *       uint16_t numCols;     // number of columns of the matrix.
     *       float32_t *pData;     // points to the data of the matrix.
     *     } arm_matrix_instance_f32;
     * </pre>
     * There are similar definitions for Q15 and Q31 data types.
     *
     * The structure specifies the size of the matrix and then points to
     * an array of data.  The array is of size <code>numRows X numCols</code>
     * and the values are arranged in row order.  That is, the
     * matrix element (i, j) is stored at:
     * <pre>
     *     pData[i*numCols + j]
     * </pre>
     *
     * \par Init Functions
     * There is an associated initialization function for each type of matrix
     * data structure.
     * The initialization function sets the values of the internal structure fields.
     * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
     * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types,  respectively.
     *
     * \par
     * Use of the initialization function is optional. However, if initialization function is used
     * then the instance structure cannot be placed into a const data section.
     * To place the instance structure in a const data
     * section, manually initialize the data structure.  For example:
     * <pre>
     * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
     * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
     * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
     * </pre>
     * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
     * specifies the number of columns, and <code>pData</code> points to the
     * data array.
     *
     * \par Size Checking
     * By default all of the matrix functions perform size checking on the input and
     * output matrices.  For example, the matrix addition function verifies that the
     * two input matrices and the output matrix all have the same number of rows and
     * columns.  If the size check fails the functions return:
     * <pre>
     *     ARM_MATH_SIZE_MISMATCH
     * </pre>
     * Otherwise the functions return
     * <pre>
     *     ARM_MATH_SUCCESS
     * </pre>
     * There is some overhead associated with this matrix size checking.
     * The matrix size checking is enabled via the \#define
     * <pre>
     *     ARM_MATH_MATRIX_CHECK
     * </pre>
     * within the library project settings.  By default this macro is defined
     * and size checking is enabled.  By changing the project settings and
     * undefining this macro size checking is eliminated and the functions
     * run a bit faster.  With size checking disabled the functions always
     * return <code>ARM_MATH_SUCCESS</code>.
     */
    
    /**
     * @defgroup groupTransforms Transform Functions
     */
    
    /**
     * @defgroup groupController Controller Functions
     */
    
    /**
     * @defgroup groupStats Statistics Functions
     */
    /**
     * @defgroup groupSupport Support Functions
     */
    
    /**
     * @defgroup groupInterpolation Interpolation Functions
     * These functions perform 1- and 2-dimensional interpolation of data.
     * Linear interpolation is used for 1-dimensional data and
     * bilinear interpolation is used for 2-dimensional data.
     */
    
    /**
     * @defgroup groupExamples Examples
     */
    #ifndef _ARM_MATH_H
    #define _ARM_MATH_H
    
    // Teensy 3.0
    #include <stdint.h>
    
    #define __ASM   __asm
    #define __INLINE  inline
    #define __STATIC_INLINE static inline
    #define __CORTEX_M  4
    #define __FPU_USED  0
    
    #define ARM_MATH_CM4
    #include "core_cmInstr.h"
    #include "core_cm4_simd.h"
    
    
    #if 0
    // generic for any board...
    #define __CMSIS_GENERIC         /* disable NVIC and Systick functions */
    #if defined (ARM_MATH_CM4)
    #include "core_cm4.h"
    #elif defined (ARM_MATH_CM3)
    #include "core_cm3.h"
    #elif defined (ARM_MATH_CM0)
    #include "core_cm0.h"
    #else
    #include "ARMCM4.h"
    #warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....."
    #endif
    #undef  __CMSIS_GENERIC         /* enable NVIC and Systick functions */
    #endif
    
    #include "string.h"
    #include "math.h"
    
    #ifdef  __cplusplus
    
    extern "C"
    {
    #endif
    
    
      /**
       * @brief Macros required for reciprocal calculation in Normalized LMS
       */
    
    
    #define DELTA_Q31       (0x100)
    #define DELTA_Q15       0x5
    #define INDEX_MASK      0x0000003F
    
    #define PI          3.14159265358979f
    
    #endif
    
      /**
       * @brief Macros required for SINE and COSINE Fast math approximations
       */
    
    
    #define TABLE_SIZE      256
    #define TABLE_SPACING_Q31 0x800000
    #define TABLE_SPACING_Q15 0x80
    
    
      /**
       * @brief Macros required for SINE and COSINE Controller functions
       */
      /* 1.31(q31) Fixed value of 2/360 */
      /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
    
    #define INPUT_SPACING     0xB60B61
    
    
      /**
       * @brief Macro for Unaligned Support
       */
    #ifndef UNALIGNED_SUPPORT_DISABLE
        #define ALIGN4
    #else
      #if defined  (__GNUC__)
        #define ALIGN4 __attribute__((aligned(4)))
      #else
        #define ALIGN4 __align(4)
      #endif
    
    #endif  /*  #ifndef UNALIGNED_SUPPORT_DISABLE */
    
    
      /**
       * @brief Error status returned by some functions in the library.
       */
    
      typedef enum
      {
        ARM_MATH_SUCCESS = 0,                /**< No error */
        ARM_MATH_ARGUMENT_ERROR = -1,        /**< One or more arguments are incorrect */
        ARM_MATH_LENGTH_ERROR = -2,          /**< Length of data buffer is incorrect */
        ARM_MATH_SIZE_MISMATCH = -3,         /**< Size of matrices is not compatible with the operation. */
        ARM_MATH_NANINF = -4,                /**< Not-a-number (NaN) or infinity is generated */
        ARM_MATH_SINGULAR = -5,              /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
        ARM_MATH_TEST_FAILURE = -6           /**< Test Failed  */
      } arm_status;
    
      /**
       * @brief 8-bit fractional data type in 1.7 format.
       */
      typedef int8_t q7_t;
    
      /**
       * @brief 16-bit fractional data type in 1.15 format.
       */
      typedef int16_t q15_t;
    
      /**
       * @brief 32-bit fractional data type in 1.31 format.
       */
      typedef int32_t q31_t;
    
      /**
       * @brief 64-bit fractional data type in 1.63 format.
       */
      typedef int64_t q63_t;
    
      /**
       * @brief 32-bit floating-point type definition.
       */
      typedef float float32_t;
    
      /**
       * @brief 64-bit floating-point type definition.
       */
      typedef double float64_t;
    
      /**
       * @brief definition to read/write two 16 bit values.
       */
    #if defined  (__GNUC__)
      #define __SIMD32(addr)         (*( int32_t **) & (addr))
      #define  _SIMD32_OFFSET(addr)  (*( int32_t * )   (addr))
    #else
      #define __SIMD32(addr)         (*(__packed                    int32_t **) & (addr))
      #define  _SIMD32_OFFSET(addr)  (*(__packed                    int32_t * )   (addr))
    #endif 
    
      #define __SIMD64(addr)  (*(int64_t **) & (addr))
    
    #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
      /**
       * @brief definition to pack two 16 bit values.
       */
    #define __PKHBT(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0x0000FFFF) | \
                                             (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000)  )
    #define __PKHTB(ARG1, ARG2, ARG3)      ( (((int32_t)(ARG1) <<  0) & (int32_t)0xFFFF0000) | \
                                             (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF)  )
    
    #endif
    
    
       /**
       * @brief definition to pack four 8 bit values.
       */
    #ifndef ARM_MATH_BIG_ENDIAN
    
    
    #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) <<  0) & (int32_t)0x000000FF) | \
                                    (((int32_t)(v1) <<  8) & (int32_t)0x0000FF00) | \
                      (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
                      (((int32_t)(v3) << 24) & (int32_t)0xFF000000)  )
    
    #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) <<  0) & (int32_t)0x000000FF) | \
                                    (((int32_t)(v2) <<  8) & (int32_t)0x0000FF00) | \
                      (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
                      (((int32_t)(v0) << 24) & (int32_t)0xFF000000)  )
    
    419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    
    #endif
    
    
      /**
       * @brief Clips Q63 to Q31 values.
       */
      __STATIC_INLINE q31_t clip_q63_to_q31(
      q63_t x)
      {
        return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
          ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
      }
    
      /**
       * @brief Clips Q63 to Q15 values.
       */
      __STATIC_INLINE q15_t clip_q63_to_q15(
      q63_t x)
      {
        return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
          ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
      }
    
      /**
       * @brief Clips Q31 to Q7 values.
       */
      __STATIC_INLINE q7_t clip_q31_to_q7(
      q31_t x)
      {
        return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
          ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
      }
    
      /**
       * @brief Clips Q31 to Q15 values.
       */
      __STATIC_INLINE q15_t clip_q31_to_q15(
      q31_t x)
      {
        return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
          ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
      }
    
      /**
       * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
       */
    
      __STATIC_INLINE q63_t mult32x64(
      q63_t x,
      q31_t y)
      {
        return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
                (((q63_t) (x >> 32) * y)));
      }
    
    
    #if defined (ARM_MATH_CM0) && defined ( __CC_ARM   )
    #define __CLZ __clz
    #endif
    
    #if defined (ARM_MATH_CM0) && defined ( __TASKING__ )
    /* No need to redefine __CLZ */
    #endif
    
    #if defined (ARM_MATH_CM0) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) )
    
      __STATIC_INLINE  uint32_t __CLZ(q31_t data);
    
    
      __STATIC_INLINE uint32_t __CLZ(q31_t data)
      {
        uint32_t count = 0;
        uint32_t mask = 0x80000000;
    
        while((data & mask) == 0)
        {
          count += 1u;
          mask = mask >> 1u;
        }
    
        return (count);
    
      }
    
    #endif
    
      /**
       * @brief Function to Calculates 1/in(reciprocal) value of Q31 Data type.
       */
    
      __STATIC_INLINE uint32_t arm_recip_q31(
      q31_t in,
      q31_t * dst,
      q31_t * pRecipTable)
      {
    
        uint32_t out, tempVal;
        uint32_t index, i;
        uint32_t signBits;
    
        if(in > 0)
        {
          signBits = __CLZ(in) - 1;
        }
        else
        {
          signBits = __CLZ(-in) - 1;
        }
    
        /* Convert input sample to 1.31 format */
        in = in << signBits;
    
        /* calculation of index for initial approximated Val */
        index = (uint32_t) (in >> 24u);
        index = (index & INDEX_MASK);
    
        /* 1.31 with exp 1 */
        out = pRecipTable[index];
    
        /* calculation of reciprocal value */
        /* running approximation for two iterations */
        for (i = 0u; i < 2u; i++)
        {
          tempVal = (q31_t) (((q63_t) in * out) >> 31u);
          tempVal = 0x7FFFFFFF - tempVal;
          /*      1.31 with exp 1 */
          //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
          out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
        }
    
        /* write output */
        *dst = out;
    
        /* return num of signbits of out = 1/in value */
        return (signBits + 1u);
    
      }
    
      /**
       * @brief Function to Calculates 1/in(reciprocal) value of Q15 Data type.
       */
      __STATIC_INLINE uint32_t arm_recip_q15(
      q15_t in,
      q15_t * dst,
      q15_t * pRecipTable)
      {
    
        uint32_t out = 0, tempVal = 0;
        uint32_t index = 0, i = 0;
        uint32_t signBits = 0;
    
        if(in > 0)
        {
          signBits = __CLZ(in) - 17;
        }
        else
        {
          signBits = __CLZ(-in) - 17;
        }
    
        /* Convert input sample to 1.15 format */
        in = in << signBits;
    
        /* calculation of index for initial approximated Val */
        index = in >> 8;
        index = (index & INDEX_MASK);
    
        /*      1.15 with exp 1  */
        out = pRecipTable[index];
    
        /* calculation of reciprocal value */
        /* running approximation for two iterations */
        for (i = 0; i < 2; i++)
        {
          tempVal = (q15_t) (((q31_t) in * out) >> 15);
          tempVal = 0x7FFF - tempVal;
          /*      1.15 with exp 1 */
          out = (q15_t) (((q31_t) out * tempVal) >> 14);
        }
    
        /* write output */
        *dst = out;
    
        /* return num of signbits of out = 1/in value */
        return (signBits + 1);
    
      }
    
    
      /*
       * @brief C custom defined intrinisic function for only M0 processors
       */
    #if defined(ARM_MATH_CM0)
    
      __STATIC_INLINE q31_t __SSAT(
      q31_t x,
      uint32_t y)
      {
        int32_t posMax, negMin;
        uint32_t i;
    
        posMax = 1;
        for (i = 0; i < (y - 1); i++)
        {
          posMax = posMax * 2;
        }
    
        if(x > 0)
        {
          posMax = (posMax - 1);
    
          if(x > posMax)
          {
            x = posMax;
          }
        }
        else
        {
          negMin = -posMax;
    
          if(x < negMin)
          {
            x = negMin;
          }
        }
        return (x);
    
    
      }
    
    #endif /* end of ARM_MATH_CM0 */
    
    
    
      /*
       * @brief C custom defined intrinsic function for M3 and M0 processors
       */
    #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
    
      /*
       * @brief C custom defined QADD8 for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __QADD8(
      q31_t x,
      q31_t y)
      {
    
        q31_t sum;
        q7_t r, s, t, u;
    
        r = (q7_t) x;
        s = (q7_t) y;
    
        r = __SSAT((q31_t) (r + s), 8);
        s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
        t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
        u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
    
        sum =
          (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
          (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
    
        return sum;
    
      }
    
      /*
       * @brief C custom defined QSUB8 for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __QSUB8(
      q31_t x,
      q31_t y)
      {
    
        q31_t sum;
        q31_t r, s, t, u;
    
        r = (q7_t) x;
        s = (q7_t) y;
    
        r = __SSAT((r - s), 8);
        s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
        t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
        u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
    
        sum =
          (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
                                                                    0x000000FF);
    
        return sum;
      }
    
      /*
       * @brief C custom defined QADD16 for M3 and M0 processors
       */
    
      /*
       * @brief C custom defined QADD16 for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __QADD16(
      q31_t x,
      q31_t y)
      {
    
        q31_t sum;
        q31_t r, s;
    
        r = (short) x;
        s = (short) y;
    
        r = __SSAT(r + s, 16);
        s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
    
        sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
    
        return sum;
    
      }
    
      /*
       * @brief C custom defined SHADD16 for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __SHADD16(
      q31_t x,
      q31_t y)
      {
    
        q31_t sum;
        q31_t r, s;
    
        r = (short) x;
        s = (short) y;
    
        r = ((r >> 1) + (s >> 1));
        s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
    
        sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
    
        return sum;
    
      }
    
      /*
       * @brief C custom defined QSUB16 for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __QSUB16(
      q31_t x,
      q31_t y)
      {
    
        q31_t sum;
        q31_t r, s;
    
        r = (short) x;
        s = (short) y;
    
        r = __SSAT(r - s, 16);
        s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
    
        sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
    
        return sum;
      }
    
      /*
       * @brief C custom defined SHSUB16 for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __SHSUB16(
      q31_t x,
      q31_t y)
      {
    
        q31_t diff;
        q31_t r, s;
    
        r = (short) x;
        s = (short) y;
    
        r = ((r >> 1) - (s >> 1));
        s = (((x >> 17) - (y >> 17)) << 16);
    
        diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
    
        return diff;
      }
    
      /*
       * @brief C custom defined QASX for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __QASX(
      q31_t x,
      q31_t y)
      {
    
        q31_t sum = 0;
    
        sum =
          ((sum +
            clip_q31_to_q15((q31_t) ((short) (x >> 16) + (short) y))) << 16) +
          clip_q31_to_q15((q31_t) ((short) x - (short) (y >> 16)));
    
        return sum;
      }
    
      /*
       * @brief C custom defined SHASX for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __SHASX(
      q31_t x,
      q31_t y)
      {
    
        q31_t sum;
        q31_t r, s;
    
        r = (short) x;
        s = (short) y;
    
        r = ((r >> 1) - (y >> 17));
        s = (((x >> 17) + (s >> 1)) << 16);
    
        sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
    
        return sum;
      }
    
    
      /*
       * @brief C custom defined QSAX for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __QSAX(
      q31_t x,
      q31_t y)
      {
    
        q31_t sum = 0;
    
        sum =
          ((sum +
            clip_q31_to_q15((q31_t) ((short) (x >> 16) - (short) y))) << 16) +
          clip_q31_to_q15((q31_t) ((short) x + (short) (y >> 16)));
    
        return sum;
      }
    
      /*
       * @brief C custom defined SHSAX for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __SHSAX(
      q31_t x,
      q31_t y)
      {
    
        q31_t sum;
        q31_t r, s;
    
        r = (short) x;
        s = (short) y;
    
        r = ((r >> 1) + (y >> 17));
        s = (((x >> 17) - (s >> 1)) << 16);
    
        sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
    
        return sum;
      }
    
      /*
       * @brief C custom defined SMUSDX for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __SMUSDX(
      q31_t x,
      q31_t y)
      {
    
        return ((q31_t) (((short) x * (short) (y >> 16)) -
                         ((short) (x >> 16) * (short) y)));
      }
    
      /*
       * @brief C custom defined SMUADX for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __SMUADX(
      q31_t x,
      q31_t y)
      {
    
        return ((q31_t) (((short) x * (short) (y >> 16)) +
                         ((short) (x >> 16) * (short) y)));
      }
    
      /*
       * @brief C custom defined QADD for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __QADD(
      q31_t x,
      q31_t y)
      {
        return clip_q63_to_q31((q63_t) x + y);
      }
    
      /*
       * @brief C custom defined QSUB for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __QSUB(
      q31_t x,
      q31_t y)
      {
        return clip_q63_to_q31((q63_t) x - y);
      }
    
      /*
       * @brief C custom defined SMLAD for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __SMLAD(
      q31_t x,
      q31_t y,
      q31_t sum)
      {
    
        return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
                ((short) x * (short) y));
      }
    
      /*
       * @brief C custom defined SMLADX for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __SMLADX(
      q31_t x,
      q31_t y,
      q31_t sum)
      {
    
        return (sum + ((short) (x >> 16) * (short) (y)) +
                ((short) x * (short) (y >> 16)));
      }
    
      /*
       * @brief C custom defined SMLSDX for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __SMLSDX(
      q31_t x,
      q31_t y,
      q31_t sum)
      {
    
        return (sum - ((short) (x >> 16) * (short) (y)) +
                ((short) x * (short) (y >> 16)));
      }
    
      /*
       * @brief C custom defined SMLALD for M3 and M0 processors
       */
      __STATIC_INLINE q63_t __SMLALD(
      q31_t x,
      q31_t y,
      q63_t sum)
      {
    
        return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
                ((short) x * (short) y));
      }
    
      /*
       * @brief C custom defined SMLALDX for M3 and M0 processors
       */
      __STATIC_INLINE q63_t __SMLALDX(
      q31_t x,
      q31_t y,
      q63_t sum)
      {
    
        return (sum + ((short) (x >> 16) * (short) y)) +
          ((short) x * (short) (y >> 16));
      }
    
      /*
       * @brief C custom defined SMUAD for M3 and M0 processors
       */
      __STATIC_INLINE q31_t __SMUAD(
      q31_t x,