Skip to content
Snippets Groups Projects
tinythread.h 20.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
    /* -*- mode: c++; tab-width: 2; indent-tabs-mode: nil; -*-
    Copyright (c) 2010-2012 Marcus Geelnard
    
    This software is provided 'as-is', without any express or implied
    warranty. In no event will the authors be held liable for any damages
    arising from the use of this software.
    
    Permission is granted to anyone to use this software for any purpose,
    including commercial applications, and to alter it and redistribute it
    freely, subject to the following restrictions:
    
        1. The origin of this software must not be misrepresented; you must not
        claim that you wrote the original software. If you use this software
        in a product, an acknowledgment in the product documentation would be
        appreciated but is not required.
    
        2. Altered source versions must be plainly marked as such, and must not be
        misrepresented as being the original software.
    
        3. This notice may not be removed or altered from any source
        distribution.
    */
    
    #ifndef _TINYTHREAD_H_
    #define _TINYTHREAD_H_
    
    /// @file
    /// @mainpage TinyThread++ API Reference
    ///
    /// @section intro_sec Introduction
    /// TinyThread++ is a minimal, portable implementation of basic threading
    /// classes for C++.
    ///
    /// They closely mimic the functionality and naming of the C++11 standard, and
    /// should be easily replaceable with the corresponding std:: variants.
    ///
    /// @section port_sec Portability
    /// The Win32 variant uses the native Win32 API for implementing the thread
    /// classes, while for other systems, the POSIX threads API (pthread) is used.
    ///
    /// @section class_sec Classes
    /// In order to mimic the threading API of the C++11 standard, subsets of
    /// several classes are provided. The fundamental classes are:
    /// @li tthread::thread
    /// @li tthread::mutex
    /// @li tthread::recursive_mutex
    /// @li tthread::condition_variable
    /// @li tthread::lock_guard
    /// @li tthread::fast_mutex
    ///
    /// @section misc_sec Miscellaneous
    /// The following special keywords are available: #thread_local.
    ///
    /// For more detailed information (including additional classes), browse the
    /// different sections of this documentation. A good place to start is:
    /// tinythread.h.
    
    // Which platform are we on?
    #if !defined(_TTHREAD_PLATFORM_DEFINED_)
      #if defined(_WIN32) || defined(__WIN32__) || defined(__WINDOWS__)
        #define _TTHREAD_WIN32_
      #else
        #define _TTHREAD_POSIX_
      #endif
      #define _TTHREAD_PLATFORM_DEFINED_
    #endif
    
    // Platform specific includes
    #if defined(_TTHREAD_WIN32_)
      #ifndef WIN32_LEAN_AND_MEAN
        #define WIN32_LEAN_AND_MEAN
        #define __UNDEF_LEAN_AND_MEAN
      #endif
      #include <windows.h>
      #ifdef __UNDEF_LEAN_AND_MEAN
        #undef WIN32_LEAN_AND_MEAN
        #undef __UNDEF_LEAN_AND_MEAN
      #endif
    #else
      #include <pthread.h>
      #include <signal.h>
      #include <sched.h>
      #include <unistd.h>
    #endif
    
    // Generic includes
    #include <ostream>
    
    /// TinyThread++ version (major number).
    #define TINYTHREAD_VERSION_MAJOR 1
    /// TinyThread++ version (minor number).
    #define TINYTHREAD_VERSION_MINOR 1
    /// TinyThread++ version (full version).
    #define TINYTHREAD_VERSION (TINYTHREAD_VERSION_MAJOR * 100 + TINYTHREAD_VERSION_MINOR)
    
    // Do we have a fully featured C++11 compiler?
    #if (__cplusplus > 199711L) || (defined(__STDCXX_VERSION__) && (__STDCXX_VERSION__ >= 201001L))
      #define _TTHREAD_CPP11_
    #endif
    
    // ...at least partial C++11?
    #if defined(_TTHREAD_CPP11_) || defined(__GXX_EXPERIMENTAL_CXX0X__) || defined(__GXX_EXPERIMENTAL_CPP0X__)
      #define _TTHREAD_CPP11_PARTIAL_
    #endif
    
    // Macro for disabling assignments of objects.
    #ifdef _TTHREAD_CPP11_PARTIAL_
      #define _TTHREAD_DISABLE_ASSIGNMENT(name) \
          name(const name&) = delete; \
          name& operator=(const name&) = delete;
    #else
      #define _TTHREAD_DISABLE_ASSIGNMENT(name) \
          name(const name&); \
          name& operator=(const name&);
    #endif
    
    /// @def thread_local
    /// Thread local storage keyword.
    /// A variable that is declared with the @c thread_local keyword makes the
    /// value of the variable local to each thread (known as thread-local storage,
    /// or TLS). Example usage:
    /// @code
    /// // This variable is local to each thread.
    /// thread_local int variable;
    /// @endcode
    /// @note The @c thread_local keyword is a macro that maps to the corresponding
    /// compiler directive (e.g. @c __declspec(thread)). While the C++11 standard
    /// allows for non-trivial types (e.g. classes with constructors and
    /// destructors) to be declared with the @c thread_local keyword, most pre-C++11
    /// compilers only allow for trivial types (e.g. @c int). So, to guarantee
    /// portable code, only use trivial types for thread local storage.
    /// @note This directive is currently not supported on Mac OS X (it will give
    /// a compiler error), since compile-time TLS is not supported in the Mac OS X
    /// executable format. Also, some older versions of MinGW (before GCC 4.x) do
    /// not support this directive.
    /// @hideinitializer
    
    #if !defined(_TTHREAD_CPP11_) && !defined(thread_local)
     #if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
      #define thread_local __thread
     #else
      #define thread_local __declspec(thread)
     #endif
    #endif
    
    
    /// Main name space for TinyThread++.
    /// This namespace is more or less equivalent to the @c std namespace for the
    /// C++11 thread classes. For instance, the tthread::mutex class corresponds to
    /// the std::mutex class.
    namespace tthread {
    
    /// Mutex class.
    /// This is a mutual exclusion object for synchronizing access to shared
    /// memory areas for several threads. The mutex is non-recursive (i.e. a
    /// program may deadlock if the thread that owns a mutex object calls lock()
    /// on that object).
    /// @see recursive_mutex
    class mutex {
      public:
        /// Constructor.
        mutex()
    #if defined(_TTHREAD_WIN32_)
          : mAlreadyLocked(false)
    #endif
        {
    #if defined(_TTHREAD_WIN32_)
          InitializeCriticalSection(&mHandle);
    #else
          pthread_mutex_init(&mHandle, NULL);
    #endif
        }
    
        /// Destructor.
        ~mutex()
        {
    #if defined(_TTHREAD_WIN32_)
          DeleteCriticalSection(&mHandle);
    #else
          pthread_mutex_destroy(&mHandle);
    #endif
        }
    
        /// Lock the mutex.
        /// The method will block the calling thread until a lock on the mutex can
        /// be obtained. The mutex remains locked until @c unlock() is called.
        /// @see lock_guard
        inline void lock()
        {
    #if defined(_TTHREAD_WIN32_)
          EnterCriticalSection(&mHandle);
          while(mAlreadyLocked) Sleep(1000); // Simulate deadlock...
          mAlreadyLocked = true;
    #else
          pthread_mutex_lock(&mHandle);
    #endif
        }
    
        /// Try to lock the mutex.
        /// The method will try to lock the mutex. If it fails, the function will
        /// return immediately (non-blocking).
        /// @return @c true if the lock was acquired, or @c false if the lock could
        /// not be acquired.
        inline bool try_lock()
        {
    #if defined(_TTHREAD_WIN32_)
          bool ret = (TryEnterCriticalSection(&mHandle) ? true : false);
          if(ret && mAlreadyLocked)
          {
            LeaveCriticalSection(&mHandle);
            ret = false;
          }
          return ret;
    #else
          return (pthread_mutex_trylock(&mHandle) == 0) ? true : false;
    #endif
        }
    
        /// Unlock the mutex.
        /// If any threads are waiting for the lock on this mutex, one of them will
        /// be unblocked.
        inline void unlock()
        {
    #if defined(_TTHREAD_WIN32_)
          mAlreadyLocked = false;
          LeaveCriticalSection(&mHandle);
    #else
          pthread_mutex_unlock(&mHandle);
    #endif
        }
    
        _TTHREAD_DISABLE_ASSIGNMENT(mutex)
    
      private:
    #if defined(_TTHREAD_WIN32_)
        CRITICAL_SECTION mHandle;
        bool mAlreadyLocked;
    #else
        pthread_mutex_t mHandle;
    #endif
    
        friend class condition_variable;
    };
    
    /// Recursive mutex class.
    /// This is a mutual exclusion object for synchronizing access to shared
    /// memory areas for several threads. The mutex is recursive (i.e. a thread
    /// may lock the mutex several times, as long as it unlocks the mutex the same
    /// number of times).
    /// @see mutex
    class recursive_mutex {
      public:
        /// Constructor.
        recursive_mutex()
        {
    #if defined(_TTHREAD_WIN32_)
          InitializeCriticalSection(&mHandle);
    #else
          pthread_mutexattr_t attr;
          pthread_mutexattr_init(&attr);
          pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
          pthread_mutex_init(&mHandle, &attr);
    #endif
        }
    
        /// Destructor.
        ~recursive_mutex()
        {
    #if defined(_TTHREAD_WIN32_)
          DeleteCriticalSection(&mHandle);
    #else
          pthread_mutex_destroy(&mHandle);
    #endif
        }
    
        /// Lock the mutex.
        /// The method will block the calling thread until a lock on the mutex can
        /// be obtained. The mutex remains locked until @c unlock() is called.
        /// @see lock_guard
        inline void lock()
        {
    #if defined(_TTHREAD_WIN32_)
          EnterCriticalSection(&mHandle);
    #else
          pthread_mutex_lock(&mHandle);
    #endif
        }
    
        /// Try to lock the mutex.
        /// The method will try to lock the mutex. If it fails, the function will
        /// return immediately (non-blocking).
        /// @return @c true if the lock was acquired, or @c false if the lock could
        /// not be acquired.
        inline bool try_lock()
        {
    #if defined(_TTHREAD_WIN32_)
          return TryEnterCriticalSection(&mHandle) ? true : false;
    #else
          return (pthread_mutex_trylock(&mHandle) == 0) ? true : false;
    #endif
        }
    
        /// Unlock the mutex.
        /// If any threads are waiting for the lock on this mutex, one of them will
        /// be unblocked.
        inline void unlock()
        {
    #if defined(_TTHREAD_WIN32_)
          LeaveCriticalSection(&mHandle);
    #else
          pthread_mutex_unlock(&mHandle);
    #endif
        }
    
        _TTHREAD_DISABLE_ASSIGNMENT(recursive_mutex)
    
      private:
    #if defined(_TTHREAD_WIN32_)
        CRITICAL_SECTION mHandle;
    #else
        pthread_mutex_t mHandle;
    #endif
    
        friend class condition_variable;
    };
    
    /// Lock guard class.
    /// The constructor locks the mutex, and the destructor unlocks the mutex, so
    /// the mutex will automatically be unlocked when the lock guard goes out of
    /// scope. Example usage:
    /// @code
    /// mutex m;
    /// int counter;
    ///
    /// void increment()
    /// {
    ///   lock_guard<mutex> guard(m);
    ///   ++ counter;
    /// }
    /// @endcode
    
    template <class T>
    class lock_guard {
      public:
        typedef T mutex_type;
    
        lock_guard() : mMutex(0) {}
    
        /// The constructor locks the mutex.
        explicit lock_guard(mutex_type &aMutex)
        {
          mMutex = &aMutex;
          mMutex->lock();
        }
    
        /// The destructor unlocks the mutex.
        ~lock_guard()
        {
          if(mMutex)
            mMutex->unlock();
        }
    
      private:
        mutex_type * mMutex;
    };
    
    /// Condition variable class.
    /// This is a signalling object for synchronizing the execution flow for
    /// several threads. Example usage:
    /// @code
    /// // Shared data and associated mutex and condition variable objects
    /// int count;
    /// mutex m;
    /// condition_variable cond;
    ///
    /// // Wait for the counter to reach a certain number
    /// void wait_counter(int targetCount)
    /// {
    ///   lock_guard<mutex> guard(m);
    ///   while(count < targetCount)
    ///     cond.wait(m);
    /// }
    ///
    /// // Increment the counter, and notify waiting threads
    /// void increment()
    /// {
    ///   lock_guard<mutex> guard(m);
    ///   ++ count;
    ///   cond.notify_all();
    /// }
    /// @endcode
    class condition_variable {
      public:
        /// Constructor.
    #if defined(_TTHREAD_WIN32_)
        condition_variable();
    #else
        condition_variable()
        {
          pthread_cond_init(&mHandle, NULL);
        }
    #endif
    
        /// Destructor.
    #if defined(_TTHREAD_WIN32_)
        ~condition_variable();
    #else
        ~condition_variable()
        {
          pthread_cond_destroy(&mHandle);
        }
    #endif
    
        /// Wait for the condition.
        /// The function will block the calling thread until the condition variable
        /// is woken by @c notify_one(), @c notify_all() or a spurious wake up.
        /// @param[in] aMutex A mutex that will be unlocked when the wait operation
        ///   starts, an locked again as soon as the wait operation is finished.
        template <class _mutexT>
        inline void wait(_mutexT &aMutex)
        {
    #if defined(_TTHREAD_WIN32_)
          // Increment number of waiters
          EnterCriticalSection(&mWaitersCountLock);
          ++ mWaitersCount;
          LeaveCriticalSection(&mWaitersCountLock);
    
          // Release the mutex while waiting for the condition (will decrease
          // the number of waiters when done)...
          aMutex.unlock();
          _wait();
          aMutex.lock();
    #else
          pthread_cond_wait(&mHandle, &aMutex.mHandle);
    #endif
        }
    
        /// Notify one thread that is waiting for the condition.
        /// If at least one thread is blocked waiting for this condition variable,
        /// one will be woken up.
        /// @note Only threads that started waiting prior to this call will be
        /// woken up.
    #if defined(_TTHREAD_WIN32_)
        void notify_one();
    #else
        inline void notify_one()
        {
          pthread_cond_signal(&mHandle);
        }
    #endif
    
        /// Notify all threads that are waiting for the condition.
        /// All threads that are blocked waiting for this condition variable will
        /// be woken up.
        /// @note Only threads that started waiting prior to this call will be
        /// woken up.
    #if defined(_TTHREAD_WIN32_)
        void notify_all();
    #else
        inline void notify_all()
        {
          pthread_cond_broadcast(&mHandle);
        }
    #endif
    
        _TTHREAD_DISABLE_ASSIGNMENT(condition_variable)
    
      private:
    #if defined(_TTHREAD_WIN32_)
        void _wait();
        HANDLE mEvents[2];                  ///< Signal and broadcast event HANDLEs.
        unsigned int mWaitersCount;         ///< Count of the number of waiters.
        CRITICAL_SECTION mWaitersCountLock; ///< Serialize access to mWaitersCount.
    #else
        pthread_cond_t mHandle;
    #endif
    };
    
    
    /// Thread class.
    class thread {
      public:
    #if defined(_TTHREAD_WIN32_)
        typedef HANDLE native_handle_type;
    #else
        typedef pthread_t native_handle_type;
    #endif
    
        class id;
    
        /// Default constructor.
        /// Construct a @c thread object without an associated thread of execution
        /// (i.e. non-joinable).
        thread() : mHandle(0), mNotAThread(true)
    #if defined(_TTHREAD_WIN32_)
        , mWin32ThreadID(0)
    #endif
        {}
    
        /// Thread starting constructor.
        /// Construct a @c thread object with a new thread of execution.
        /// @param[in] aFunction A function pointer to a function of type:
        ///          <tt>void fun(void * arg)</tt>
        /// @param[in] aArg Argument to the thread function.
        /// @note This constructor is not fully compatible with the standard C++
        /// thread class. It is more similar to the pthread_create() (POSIX) and
        /// CreateThread() (Windows) functions.
        thread(void (*aFunction)(void *), void * aArg);
    
        /// Destructor.
        /// @note If the thread is joinable upon destruction, @c std::terminate()
        /// will be called, which terminates the process. It is always wise to do
        /// @c join() before deleting a thread object.
        ~thread();
    
        /// Wait for the thread to finish (join execution flows).
        /// After calling @c join(), the thread object is no longer associated with
        /// a thread of execution (i.e. it is not joinable, and you may not join
        /// with it nor detach from it).
        void join();
    
        /// Check if the thread is joinable.
        /// A thread object is joinable if it has an associated thread of execution.
        bool joinable() const;
    
        /// Detach from the thread.
        /// After calling @c detach(), the thread object is no longer assicated with
        /// a thread of execution (i.e. it is not joinable). The thread continues
        /// execution without the calling thread blocking, and when the thread
        /// ends execution, any owned resources are released.
        void detach();
    
        /// Return the thread ID of a thread object.
        id get_id() const;
    
        /// Get the native handle for this thread.
        /// @note Under Windows, this is a @c HANDLE, and under POSIX systems, this
        /// is a @c pthread_t.
        inline native_handle_type native_handle()
        {
          return mHandle;
        }
    
        /// Determine the number of threads which can possibly execute concurrently.
        /// This function is useful for determining the optimal number of threads to
        /// use for a task.
        /// @return The number of hardware thread contexts in the system.
        /// @note If this value is not defined, the function returns zero (0).
        static unsigned hardware_concurrency();
    
        _TTHREAD_DISABLE_ASSIGNMENT(thread)
    
      private:
        native_handle_type mHandle;   ///< Thread handle.
        mutable mutex mDataMutex;     ///< Serializer for access to the thread private data.
        bool mNotAThread;             ///< True if this object is not a thread of execution.
    #if defined(_TTHREAD_WIN32_)
        unsigned int mWin32ThreadID;  ///< Unique thread ID (filled out by _beginthreadex).
    #endif
    
        // This is the internal thread wrapper function.
    #if defined(_TTHREAD_WIN32_)
        static unsigned WINAPI wrapper_function(void * aArg);
    #else
        static void * wrapper_function(void * aArg);
    #endif
    };
    
    /// Thread ID.
    /// The thread ID is a unique identifier for each thread.
    /// @see thread::get_id()
    class thread::id {
      public:
        /// Default constructor.
        /// The default constructed ID is that of thread without a thread of
        /// execution.
        id() : mId(0) {};
    
        id(unsigned long int aId) : mId(aId) {};
    
        id(const id& aId) : mId(aId.mId) {};
    
        inline id & operator=(const id &aId)
        {
          mId = aId.mId;
          return *this;
        }
    
        inline friend bool operator==(const id &aId1, const id &aId2)
        {
          return (aId1.mId == aId2.mId);
        }
    
        inline friend bool operator!=(const id &aId1, const id &aId2)
        {
          return (aId1.mId != aId2.mId);
        }
    
        inline friend bool operator<=(const id &aId1, const id &aId2)
        {
          return (aId1.mId <= aId2.mId);
        }
    
        inline friend bool operator<(const id &aId1, const id &aId2)
        {
          return (aId1.mId < aId2.mId);
        }
    
        inline friend bool operator>=(const id &aId1, const id &aId2)
        {
          return (aId1.mId >= aId2.mId);
        }
    
        inline friend bool operator>(const id &aId1, const id &aId2)
        {
          return (aId1.mId > aId2.mId);
        }
    
        inline friend std::ostream& operator <<(std::ostream &os, const id &obj)
        {
          os << obj.mId;
          return os;
        }
    
      private:
        unsigned long int mId;
    };
    
    
    // Related to <ratio> - minimal to be able to support chrono.
    typedef long long __intmax_t;
    
    /// Minimal implementation of the @c ratio class. This class provides enough
    /// functionality to implement some basic @c chrono classes.
    template <__intmax_t N, __intmax_t D = 1> class ratio {
      public:
        static double _as_double() { return double(N) / double(D); }
    };
    
    /// Minimal implementation of the @c chrono namespace.
    /// The @c chrono namespace provides types for specifying time intervals.
    namespace chrono {
      /// Duration template class. This class provides enough functionality to
      /// implement @c this_thread::sleep_for().
      template <class _Rep, class _Period = ratio<1> > class duration {
        private:
          _Rep rep_;
        public:
          typedef _Rep rep;
          typedef _Period period;
    
          /// Construct a duration object with the given duration.
          template <class _Rep2>
            explicit duration(const _Rep2& r) : rep_(r) {};
    
          /// Return the value of the duration object.
          rep count() const
          {
            return rep_;
          }
      };
    
      // Standard duration types.
      typedef duration<__intmax_t, ratio<1, 1000000000> > nanoseconds; ///< Duration with the unit nanoseconds.
      typedef duration<__intmax_t, ratio<1, 1000000> > microseconds;   ///< Duration with the unit microseconds.
      typedef duration<__intmax_t, ratio<1, 1000> > milliseconds;      ///< Duration with the unit milliseconds.
      typedef duration<__intmax_t> seconds;                            ///< Duration with the unit seconds.
      typedef duration<__intmax_t, ratio<60> > minutes;                ///< Duration with the unit minutes.
      typedef duration<__intmax_t, ratio<3600> > hours;                ///< Duration with the unit hours.
    }
    
    /// The namespace @c this_thread provides methods for dealing with the
    /// calling thread.
    namespace this_thread {
      /// Return the thread ID of the calling thread.
      thread::id get_id();
    
      /// Yield execution to another thread.
      /// Offers the operating system the opportunity to schedule another thread
      /// that is ready to run on the current processor.
      inline void yield()
      {
    #if defined(_TTHREAD_WIN32_)
        Sleep(0);
    #else
        sched_yield();
    #endif
      }
    
      /// Blocks the calling thread for a period of time.
      /// @param[in] aTime Minimum time to put the thread to sleep.
      /// Example usage:
      /// @code
      /// // Sleep for 100 milliseconds
      /// this_thread::sleep_for(chrono::milliseconds(100));
      /// @endcode
      /// @note Supported duration types are: nanoseconds, microseconds,
      /// milliseconds, seconds, minutes and hours.
      template <class _Rep, class _Period> void sleep_for(const chrono::duration<_Rep, _Period>& aTime)
      {
    #if defined(_TTHREAD_WIN32_)
        Sleep(int(double(aTime.count()) * (1000.0 * _Period::_as_double()) + 0.5));
    #else
        usleep(int(double(aTime.count()) * (1000000.0 * _Period::_as_double()) + 0.5));
    #endif
      }
    }
    
    }
    
    // Define/macro cleanup
    #undef _TTHREAD_DISABLE_ASSIGNMENT
    
    #endif // _TINYTHREAD_H_