Newer
Older
/*
* Fadecandy device interface
*
* Copyright (c) 2013 Micah Elizabeth Scott
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "fcdevice.h"
#include <sstream>
#include <stdio.h>
FCDevice::Transfer::Transfer(FCDevice *device, void *buffer, int length, PacketType type)
device(device), type(type)
libusb_fill_bulk_transfer(transfer, device->mHandle,
OUT_ENDPOINT, (uint8_t*) buffer, length, FCDevice::completeTransfer, this, 2000);
}
FCDevice::Transfer::~Transfer()
{
FCDevice::FCDevice(tthread::recursive_mutex &eventMutex, libusb_device *device, bool verbose)
Micah Elizabeth Scott
committed
mEventMutex(eventMutex), mConfigMap(0),
mNumFramesPending(0), mFrameWaitingForSubmit(false)
memset(&mFirmwareConfig, 0, sizeof mFirmwareConfig);
mFirmwareConfig.control = TYPE_CONFIG;
// Framebuffer headers
memset(mFramebuffer, 0, sizeof mFramebuffer);
for (unsigned i = 0; i < FRAMEBUFFER_PACKETS; ++i) {
mFramebuffer[i].control = TYPE_FRAMEBUFFER | i;
}
mFramebuffer[FRAMEBUFFER_PACKETS - 1].control |= FINAL;
// Color LUT headers
memset(mColorLUT, 0, sizeof mColorLUT);
for (unsigned i = 0; i < LUT_PACKETS; ++i) {
mColorLUT[i].control = TYPE_LUT | i;
}
mColorLUT[LUT_PACKETS - 1].control |= FINAL;
/*
* If we have pending transfers, cancel them and jettison them
* from the FCDevice. The Transfer objects themselves will be freed
* once libusb completes them.
*/
for (std::set<Transfer*>::iterator i = mPending.begin(), e = mPending.end(); i != e; ++i) {
Transfer *fct = *i;
libusb_cancel_transfer(fct->transfer);
fct->device = 0;
}
bool FCDevice::probe(libusb_device *device)
if (libusb_get_device_descriptor(device, &dd) < 0) {
// Can't access descriptor?
return false;
}
return dd.idVendor == 0x1d50 && dd.idProduct == 0x607a;
int r = libusb_get_device_descriptor(mDevice, &mDD);
if (r < 0) {
return r;
}
r = libusb_open(mDevice, &mHandle);
if (r < 0) {
return r;
}
r = libusb_claim_interface(mHandle, 0);
if (r < 0) {
return r;
}
return libusb_get_string_descriptor_ascii(mHandle, mDD.iSerialNumber, (uint8_t*)mSerial, sizeof mSerial);
bool FCDevice::matchConfiguration(const Value &config)
if (matchConfigurationWithTypeAndSerial(config, "fadecandy", mSerial)) {
mConfigMap = findConfigMap(config);
configureDevice(config);
void FCDevice::configureDevice(const Value &config)
{
/*
* Send a device configuration settings packet, using the default values in our
* JSON config file. This can be overridden over OPC later on.
*/
const Value &led = config["led"];
if (!(led.IsTrue() || led.IsFalse() || led.IsNull())) {
std::clog << "LED configuration must be true (always on), false (always off), or null (default).\n";
}
mFirmwareConfig.data[0] =
(led.IsNull() ? 0 : CFLAG_NO_ACTIVITY_LED) |
(led.IsTrue() ? CFLAG_LED_CONTROL : 0) ;
writeFirmwareConfiguration();
}
bool FCDevice::submitTransfer(Transfer *fct)
/*
* Submit a new USB transfer. The Transfer object is guaranteed to be freed eventually.
* On error, it's freed right away.
*/
int r = libusb_submit_transfer(fct->transfer);
if (r < 0) {
if (mVerbose && r != LIBUSB_ERROR_PIPE) {
std::clog << "Error submitting USB transfer: " << libusb_strerror(libusb_error(r)) << "\n";
}
delete fct;
return false;
return true;
Micah Elizabeth Scott
committed
void FCDevice::completeTransfer(libusb_transfer *transfer)
/*
* Transfer complete. The FCDevice may or may not still exist; if the device was unplugged,
* fct->device will be set to 0 by ~FCDevice().
*/
FCDevice::Transfer *fct = static_cast<FCDevice::Transfer*>(transfer->user_data);
FCDevice *self = fct->device;
tthread::lock_guard<tthread::recursive_mutex> guard(self->mEventMutex);
switch (fct->type) {
case FRAME:
self->mNumFramesPending--;
if (self->mFrameWaitingForSubmit) {
self->writeFramebuffer();
}
break;
default:
break;
}
void FCDevice::writeColorCorrection(const Value &color)
{
/*
* Populate the color correction table based on a JSON configuration object,
* and send the new color LUT out over USB.
*
* 'color' may be 'null' to load an identity-mapped LUT, or it may be
* a dictionary of options including 'gamma' and 'whitepoint'.
Micah Elizabeth Scott
committed
*
* This calculates a compound curve with a linear section and a nonlinear
* section. The linear section, near zero, avoids creating very low output
* values that will cause distracting flicker when dithered. This isn't a problem
* when the LEDs are viewed indirectly such that the flicker is below the threshold
* of perception, but in cases where the flicker is a problem this linear section can
* eliminate it entierly at the cost of some dynamic range.
Micah Elizabeth Scott
committed
*
* By default, the linear section is disabled (linearCutoff is zero). To enable the
* linear section, set linearCutoff to some nonzero value. A good starting point is
* 1/256.0, correspnding to the lowest 8-bit PWM level.
Micah Elizabeth Scott
committed
double gamma = 1.0; // Power for nonlinear portion of curve
double whitepoint[3] = {1.0, 1.0, 1.0}; // White-point RGB value (also, global brightness)
double linearSlope = 1.0; // Slope (output / input) of linear section of the curve, near zero
double linearCutoff = 0.0; // Y (output) coordinate of intersection of linear and nonlinear curves
/*
* Parse the JSON object
*/
if (color.IsObject()) {
const Value &vGamma = color["gamma"];
const Value &vWhitepoint = color["whitepoint"];
Micah Elizabeth Scott
committed
const Value &vLinearSlope = color["linearSlope"];
const Value &vLinearCutoff = color["linearCutoff"];
if (vGamma.IsNumber()) {
gamma = vGamma.GetDouble();
} else if (!vGamma.IsNull() && mVerbose) {
std::clog << "Gamma value must be a number.\n";
}
Micah Elizabeth Scott
committed
if (vLinearSlope.IsNumber()) {
linearSlope = vLinearSlope.GetDouble();
} else if (!vLinearSlope.IsNull() && mVerbose) {
std::clog << "Linear slope value must be a number.\n";
}
if (vLinearCutoff.IsNumber()) {
linearCutoff = vLinearCutoff.GetDouble();
} else if (!vLinearCutoff.IsNull() && mVerbose) {
std::clog << "Linear slope value must be a number.\n";
}
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
if (vWhitepoint.IsArray() &&
vWhitepoint.Size() == 3 &&
vWhitepoint[0u].IsNumber() &&
vWhitepoint[1].IsNumber() &&
vWhitepoint[2].IsNumber()) {
whitepoint[0] = vWhitepoint[0u].GetDouble();
whitepoint[1] = vWhitepoint[1].GetDouble();
whitepoint[2] = vWhitepoint[2].GetDouble();
} else if (!vWhitepoint.IsNull() && mVerbose) {
std::clog << "Whitepoint value must be a list of 3 numbers.\n";
}
} else if (!color.IsNull() && mVerbose) {
std::clog << "Color correction value must be a JSON dictionary object.\n";
}
/*
* Calculate the color LUT, stowing the result in an array of USB packets.
*/
Packet *packet = mColorLUT;
const unsigned firstByteOffset = 1; // Skip padding byte
unsigned byteOffset = firstByteOffset;
for (unsigned channel = 0; channel < 3; channel++) {
for (unsigned entry = 0; entry < LUT_ENTRIES; entry++) {
Micah Elizabeth Scott
committed
double output;
/*
* Normalized input value corresponding to this LUT entry.
* Ranges from 0 to slightly higher than 1. (The last LUT entry
* can't quite be reached.)
*/
double input = (entry << 8) / 65535.0;
Micah Elizabeth Scott
committed
// Scale by whitepoint before anything else
input *= whitepoint[channel];
// Is this entry part of the linear section still?
if (input * linearSlope <= linearCutoff) {
// Output value is below linearCutoff. We're still in the linear portion of the curve
output = input * linearSlope;
} else {
// Nonlinear portion of the curve. This starts right where the linear portion leaves
// off. We need to avoid any discontinuity.
double nonlinearInput = input - (linearSlope * linearCutoff);
double scale = 1.0 - linearCutoff;
output = linearCutoff + pow(nonlinearInput / scale, gamma) * scale;
}
// Round to the nearest integer, and clamp. Overflow-safe.
int64_t longValue = (output * 0xFFFF) + 0.5;
int intValue = std::max<int64_t>(0, std::min<int64_t>(0xFFFF, longValue));
// Store LUT entry, little-endian order.
packet->data[byteOffset++] = uint8_t(intValue);
packet->data[byteOffset++] = uint8_t(intValue >> 8);
if (byteOffset >= sizeof packet->data) {
byteOffset = firstByteOffset;
packet++;
}
}
}
// Start asynchronously sending the LUT.
submitTransfer(new Transfer(this, &mColorLUT, sizeof mColorLUT));
void FCDevice::writeFramebuffer()
{
/*
* Asynchronously write the current framebuffer.
* Note that the OS will copy our framebuffer at submit-time.
*
* TODO: Currently if this gets ahead of what the USB device is capable of,
* we always drop frames. Alternatively, it would be nice to have end-to-end
* flow control so that the client can produce frames slower.
if (mNumFramesPending >= 2) {
// Too many outstanding frames. Wait to submit until a previous frame completes.
mFrameWaitingForSubmit = true;
return;
}
if (submitTransfer(new Transfer(this, &mFramebuffer, sizeof mFramebuffer, FRAME))) {
mFrameWaitingForSubmit = false;
mNumFramesPending++;
}
void FCDevice::writeMessage(const OPCSink::Message &msg)
{
/*
* Dispatch an incoming OPC command
*/
case OPCSink::SetPixelColors:
opcSetPixelColors(msg);
writeFramebuffer();
return;
case OPCSink::SystemExclusive:
opcSysEx(msg);
return;
}
if (mVerbose) {
std::clog << "Unsupported OPC command: " << unsigned(msg.command) << "\n";
}
void FCDevice::opcSysEx(const OPCSink::Message &msg)
{
if (msg.length() < 4) {
if (mVerbose) {
std::clog << "SysEx message too short!\n";
}
return;
}
unsigned id = (unsigned(msg.data[0]) << 24) |
(unsigned(msg.data[1]) << 16) |
(unsigned(msg.data[2]) << 8) |
unsigned(msg.data[3]) ;
case OPCSink::FCSetGlobalColorCorrection:
return opcSetGlobalColorCorrection(msg);
case OPCSink::FCSetFirmwareConfiguration:
return opcSetFirmwareConfiguration(msg);
void FCDevice::opcSetPixelColors(const OPCSink::Message &msg)
{
/*
* Parse through our device's mapping, and store any relevant portions of 'msg'
* in the framebuffer.
*/
if (!mConfigMap) {
// No mapping defined yet. This device is inactive.
return;
}
const Value &map = *mConfigMap;
for (unsigned i = 0, e = map.Size(); i != e; i++) {
opcMapPixelColors(msg, map[i]);
}
void FCDevice::opcMapPixelColors(const OPCSink::Message &msg, const Value &inst)
{
/*
* Parse one JSON mapping instruction, and copy any relevant parts of 'msg'
* into our framebuffer. This looks for any mapping instructions that we
* recognize:
*
* [ OPC Channel, First OPC Pixel, First output pixel, pixel count ]
unsigned msgPixelCount = msg.length() / 3;
if (inst.IsArray() && inst.Size() == 4) {
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
// Map a range from an OPC channel to our framebuffer
const Value &vChannel = inst[0u];
const Value &vFirstOPC = inst[1];
const Value &vFirstOut = inst[2];
const Value &vCount = inst[3];
if (vChannel.IsUint() && vFirstOPC.IsUint() && vFirstOut.IsUint() && vCount.IsUint()) {
unsigned channel = vChannel.GetUint();
unsigned firstOPC = vFirstOPC.GetUint();
unsigned firstOut = vFirstOut.GetUint();
unsigned count = vCount.GetUint();
if (channel != msg.channel) {
return;
}
// Clamping, overflow-safe
firstOPC = std::min<unsigned>(firstOPC, msgPixelCount);
firstOut = std::min<unsigned>(firstOut, unsigned(NUM_PIXELS));
count = std::min<unsigned>(count, msgPixelCount - firstOPC);
count = std::min<unsigned>(count, NUM_PIXELS - firstOut);
// Copy pixels
const uint8_t *inPtr = msg.data + (firstOPC * 3);
unsigned outIndex = firstOut;
while (count--) {
uint8_t *outPtr = fbPixel(outIndex++);
outPtr[0] = inPtr[0];
outPtr[1] = inPtr[1];
outPtr[2] = inPtr[2];
inPtr += 3;
}
return;
}
}
// Still haven't found a match?
std::clog << "Unsupported JSON mapping instruction\n";
void FCDevice::opcSetGlobalColorCorrection(const OPCSink::Message &msg)
{
/*
* Parse the message as JSON text, and if successful, write new
* color correction data to the device.
*/
// Mutable NUL-terminated copy of the message string
std::string text((char*)msg.data + 4, msg.length() - 4);
// Parse it in-place
rapidjson::Document doc;
doc.ParseInsitu<0>(&text[0]);
if (doc.HasParseError()) {
if (mVerbose) {
std::clog << "Parse error in color correction JSON at character "
<< doc.GetErrorOffset() << ": " << doc.GetParseError() << "\n";
}
return;
}
/*
* Successfully parsed the JSON. From here, it's handled identically to
* objects that come through the config file.
*/
writeColorCorrection(doc);
}
void FCDevice::opcSetFirmwareConfiguration(const OPCSink::Message &msg)
{
/*
* Raw firmware configuration packet
*/
memcpy(mFirmwareConfig.data, msg.data + 4, std::min<size_t>(sizeof mFirmwareConfig.data, msg.length() - 4));
writeFirmwareConfiguration();
}
void FCDevice::writeFirmwareConfiguration()
{
// Write mFirmwareConfig to the device
submitTransfer(new Transfer(this, &mFirmwareConfig, sizeof mFirmwareConfig));
}
std::string FCDevice::getName()
{
std::ostringstream s;
s << "Fadecandy";
if (mSerial[0]) {
unsigned major = mDD.bcdDevice >> 8;
unsigned minor = mDD.bcdDevice & 0xFF;
char version[10];
snprintf(version, sizeof version, "%x.%02x", major, minor);
s << " (Serial# " << mSerial << ", Version " << version << ")";