Skip to content
Snippets Groups Projects
fcdevice.cpp 11.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • /*
     * Fadecandy device interface
     * 
     * Copyright (c) 2013 Micah Elizabeth Scott
     * 
     * Permission is hereby granted, free of charge, to any person obtaining a copy of
     * this software and associated documentation files (the "Software"), to deal in
     * the Software without restriction, including without limitation the rights to
     * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
     * the Software, and to permit persons to whom the Software is furnished to do so,
     * subject to the following conditions:
     * 
     * The above copyright notice and this permission notice shall be included in all
     * copies or substantial portions of the Software.
     * 
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
     * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
     * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
     * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     */
    
    #include "fcdevice.h"
    
    #include <math.h>
    
    #include <iostream>
    
    FCDevice::Transfer::Transfer(FCDevice *device, void *buffer, int length)
    	: transfer(libusb_alloc_transfer(0)),
    	  device(device)
    {
    	libusb_fill_bulk_transfer(transfer, device->mHandle,
    		OUT_ENDPOINT, (uint8_t*) buffer, length, FCDevice::completeTransfer, this, 2000);
    }
    
    FCDevice::Transfer::~Transfer()
    {
    	libusb_free_transfer(transfer);
    }
    
    
    FCDevice::FCDevice(libusb_device *device, bool verbose)
    
    	: USBDevice(device, verbose),
    
    	  mConfigMap(0)
    
    {
    	mSerial[0] = '\0';
    
    
    	// Framebuffer headers
    
    	memset(mFramebuffer, 0, sizeof mFramebuffer);
    
    	for (unsigned i = 0; i < FRAMEBUFFER_PACKETS; ++i) {
    		mFramebuffer[i].control = TYPE_FRAMEBUFFER | i;
    	}
    	mFramebuffer[FRAMEBUFFER_PACKETS - 1].control |= FINAL;
    
    
    	// Color LUT headers
    	memset(mColorLUT, 0, sizeof mColorLUT);
    	for (unsigned i = 0; i < LUT_PACKETS; ++i) {
    		mColorLUT[i].control = TYPE_LUT | i;
    	}
    	mColorLUT[LUT_PACKETS - 1].control |= FINAL;
    
    }
    
    FCDevice::~FCDevice()
    {
    
    	/*
    	 * If we have pending transfers, cancel them and jettison them
    	 * from the FCDevice. The Transfer objects themselves will be freed
    	 * once libusb completes them.
    	 */
    
    	for (std::set<Transfer*>::iterator i = mPending.begin(), e = mPending.end(); i != e; ++i) {
    		Transfer *fct = *i;
    		libusb_cancel_transfer(fct->transfer);
    		fct->device = 0;
    	}
    
    bool FCDevice::probe(libusb_device *device)
    
    {
    	libusb_device_descriptor dd;
    
    
    	if (libusb_get_device_descriptor(device, &dd) < 0) {
    
    		// Can't access descriptor?
    		return false;
    	}
    
    	return dd.idVendor == 0x1d50 && dd.idProduct == 0x607a;
    }
    
    int FCDevice::open()
    {
    
    	libusb_device_descriptor dd;
    	int r = libusb_get_device_descriptor(mDevice, &dd);
    
    	if (r < 0) {
    		return r;
    	}
    
    
    	r = libusb_open(mDevice, &mHandle);
    	if (r < 0) {
    		return r;
    	}
    
    	r = libusb_claim_interface(mHandle, 0);
    
    	if (r < 0) {
    		return r;
    	}
    
    	return libusb_get_string_descriptor_ascii(mHandle, dd.iSerialNumber, (uint8_t*)mSerial, sizeof mSerial);
    }
    
    
    bool FCDevice::matchConfiguration(const Value &config)
    
    	/*
    	 * Parse out the portions of our JSON configuration document which matter to us.
    	 */
    
    	if (!config.IsObject()) {
    
    		return false;
    	}
    
    	const Value &vtype = config["type"];
    	const Value &vserial = config["serial"];
    	const Value &vmap = config["map"];
    
    	if (!vtype.IsString() || strcmp(vtype.GetString(), "fadecandy")) {
    		// Wrong type
    		return false;
    	}
    
    	if (!vserial.IsNull()) {
    		// Not a wildcard serial number?
    		// If a serial was not specified, it matches any device.
    
    		if (!vserial.IsString()) {
    			// Non-string serial number. Bad form.
    			return false;
    		}
    
    		if (strcmp(vserial.GetString(), mSerial)) {
    			// Not a match
    			return false;
    
    		// The map is optional, but if it exists it needs to be an array.
    
    	} else {
    		mConfigMap = 0;
    
    		if (!vmap.IsNull() && mVerbose) {
    
    			std::clog << "Device configuration 'map' must be an array.\n";
    		}
    	}
    
    void FCDevice::submitTransfer(Transfer *fct)
    {
    	/*
    	 * Submit a new USB transfer. The Transfer object is guaranteed to be freed eventually.
    	 * On error, it's freed right away.
    	 */
    
    	int r = libusb_submit_transfer(fct->transfer);
    
    	if (r < 0) {
    
    		if (mVerbose && r != LIBUSB_ERROR_PIPE) {
    
    			std::clog << "Error submitting USB transfer: " << libusb_strerror(libusb_error(r)) << "\n";
    		}
    		delete fct;
    	} else {
    		mPending.insert(fct);
    	}
    }
    
    void FCDevice::completeTransfer(struct libusb_transfer *transfer)
    {
    	/*
    	 * Transfer complete. The FCDevice may or may not still exist; if the device was unplugged,
    	 * fct->device will be set to 0 by ~FCDevice().
    	 */
    
    	FCDevice::Transfer *fct = static_cast<FCDevice::Transfer*>(transfer->user_data);
    	FCDevice *self = fct->device;
    
    	if (self) {
    		self->mPending.erase(fct);
    	}
    
    	delete fct;
    }
    
    
    void FCDevice::writeColorCorrection(const Value &color)
    {
    
    	/*
    	 * Populate the color correction table based on a JSON configuration object,
    	 * and send the new color LUT out over USB.
    	 *
    	 * 'color' may be 'null' to load an identity-mapped LUT, or it may be
    	 * a dictionary of options including 'gamma' and 'whitepoint'.
    	 */
    
    	// Default color LUT parameters
    	double gamma = 1.0;
    	double whitepoint[3] = {1.0, 1.0, 1.0};
    
    	/*
    	 * Parse the JSON object
    	 */
    
    	if (color.IsObject()) {
    		const Value &vGamma = color["gamma"];
    		const Value &vWhitepoint = color["whitepoint"];
    
    		if (vGamma.IsNumber()) {
    			gamma = vGamma.GetDouble();
    		} else if (!vGamma.IsNull() && mVerbose) {
    			std::clog << "Gamma value must be a number.\n";
    		}
    
    		if (vWhitepoint.IsArray() &&
    			vWhitepoint.Size() == 3 &&
    			vWhitepoint[0u].IsNumber() &&
    			vWhitepoint[1].IsNumber() &&
    			vWhitepoint[2].IsNumber()) {
    			whitepoint[0] = vWhitepoint[0u].GetDouble();
    			whitepoint[1] = vWhitepoint[1].GetDouble();
    			whitepoint[2] = vWhitepoint[2].GetDouble();
    		} else if (!vWhitepoint.IsNull() && mVerbose) {
    			std::clog << "Whitepoint value must be a list of 3 numbers.\n";
    		}
    
    	} else if (!color.IsNull() && mVerbose) {
    		std::clog << "Color correction value must be a JSON dictionary object.\n";
    	}
    
    	/*
    	 * Calculate the color LUT, stowing the result in an array of USB packets.
    	 */
    
    	Packet *packet = mColorLUT;
    
    	const unsigned firstByteOffset = 1;	 // Skip padding byte
    	unsigned byteOffset = firstByteOffset;
    
    	for (unsigned channel = 0; channel < 3; channel++) {
    		for (unsigned entry = 0; entry < LUT_ENTRIES; entry++) {
    
    
    			/*
    			 * Normalized input value corresponding to this LUT entry.
    			 * Ranges from 0 to slightly higher than 1. (The last LUT entry
    			 * can't quite be reached.)
    			 */
    			double input = (entry << 8) / 65535.0;
    
    			// Color conversion
    			double output = pow(input * whitepoint[channel], gamma);
    
    			// Round to the nearest integer, and clamp. Overflow-safe.
    			int64_t longValue = (output * 0xFFFF) + 0.5;
    			int intValue = std::max<int64_t>(0, std::min<int64_t>(0xFFFF, longValue));
    
    			// Store LUT entry, little-endian order.
    			packet->data[byteOffset++] = uint8_t(intValue);
    			packet->data[byteOffset++] = uint8_t(intValue >> 8);
    			if (byteOffset >= sizeof packet->data) {
    
    				byteOffset = firstByteOffset;
    				packet++;
    
    			}
    		}
    	}
    
    	// Start asynchronously sending the LUT.
    	submitTransfer(new Transfer(this, &mColorLUT, sizeof mColorLUT));
    
    void FCDevice::writeFramebuffer()
    {
    	/*
    	 * Asynchronously write the current framebuffer.
    	 * Note that the OS will copy our framebuffer at submit-time.
    
    	 *
    	 * XXX: To-do, flow control. If more than one frame is pending, we need to be able to
    	 *      tell clients that we're going too fast, *or* we need to drop frames.
    
    	 */
    
    	submitTransfer(new Transfer(this, &mFramebuffer, sizeof mFramebuffer));
    }
    
    
    void FCDevice::writeMessage(const OPCSink::Message &msg)
    {
    
    	/*
    	 * Dispatch an incoming OPC command
    	 */
    
    	switch (msg.command) {
    
    		case OPCSink::SetPixelColors:
    			opcSetPixelColors(msg);
    			writeFramebuffer();
    			return;
    
    
    		case OPCSink::SystemExclusive:
    			opcSysEx(msg);
    
    		std::clog << "Unsupported OPC command: " << unsigned(msg.command) << "\n";
    
    void FCDevice::opcSysEx(const OPCSink::Message &msg)
    {
    	if (msg.length() < 4) {
    		if (mVerbose) {
    			std::clog << "SysEx message too short!\n";
    		}
    		return;
    	}
    
    	unsigned id = (unsigned(msg.data[0]) << 24) |
    				  (unsigned(msg.data[1]) << 16) |
    				  (unsigned(msg.data[2]) << 8)  |
    				   unsigned(msg.data[3])        ;
    
    	switch (id) {
    
    		case OPCSink::FCSetGlobalColorCorrection:
    			return opcSetGlobalColorCorrection(msg);
    
    	}
    
    	// Quietly ignore unhandled SysEx messages.
    }
    
    
    void FCDevice::opcSetPixelColors(const OPCSink::Message &msg)
    {
    	/*
    	 * Parse through our device's mapping, and store any relevant portions of 'msg'
    	 * in the framebuffer.
    	 */
    
    
    	if (!mConfigMap) {
    		// No mapping defined yet. This device is inactive.
    		return;
    	}
    
    	const Value &map = *mConfigMap;
    	for (unsigned i = 0, e = map.Size(); i != e; i++) {
    		opcMapPixelColors(msg, map[i]);
    	}
    
    void FCDevice::opcMapPixelColors(const OPCSink::Message &msg, const Value &inst)
    {
    	/*
    	 * Parse one JSON mapping instruction, and copy any relevant parts of 'msg'
    	 * into our framebuffer. This looks for any mapping instructions that we
    	 * recognize:
    	 *
         *   [ OPC Channel, First OPC Pixel, First output pixel, pixel count ]
    	 */
    
        unsigned msgPixelCount = msg.length() / 3;
    
        if (inst.IsArray() && inst.Size() == 4) {
        	// Map a range from an OPC channel to our framebuffer
    
        	const Value &vChannel = inst[0u];
        	const Value &vFirstOPC = inst[1];
        	const Value &vFirstOut = inst[2];
        	const Value &vCount = inst[3];
    
        	if (vChannel.IsUint() && vFirstOPC.IsUint() && vFirstOut.IsUint() && vCount.IsUint()) {
        		unsigned channel = vChannel.GetUint();
        		unsigned firstOPC = vFirstOPC.GetUint();
        		unsigned firstOut = vFirstOut.GetUint();
        		unsigned count = vCount.GetUint();
    
        		if (channel != msg.channel) {
        			return;
        		}
    
        		// Clamping, overflow-safe
        		firstOPC = std::min<unsigned>(firstOPC, msgPixelCount);
        		firstOut = std::min<unsigned>(firstOut, unsigned(NUM_PIXELS));
        		count = std::min<unsigned>(count, msgPixelCount - firstOPC);
        		count = std::min<unsigned>(count, NUM_PIXELS - firstOut);
    
        		// Copy pixels
        		const uint8_t *inPtr = msg.data + (firstOPC * 3);
        		unsigned outIndex = firstOut;
    
       			while (count--) {
       				uint8_t *outPtr = fbPixel(outIndex++);
       				outPtr[0] = inPtr[0];
       				outPtr[1] = inPtr[1];
       				outPtr[2] = inPtr[2];
       				inPtr += 3;
       			}
    
       			return;
        	}
    	}
    
    	// Still haven't found a match?
        if (mVerbose) {
        	std::clog << "Unsupported JSON mapping instruction\n";
        }
    }
    
    
    void FCDevice::opcSetGlobalColorCorrection(const OPCSink::Message &msg)
    {
    	/*
    	 * Parse the message as JSON text, and if successful, write new
    	 * color correction data to the device.
    	 */
    
    	// Mutable NUL-terminated copy of the message string
    
    	std::string text((char*)msg.data + 4, msg.length() - 4);
    	if (mVerbose) {
    		std::clog << "New global color correction settings: " << text << "\n";
    	}
    
    
    	// Parse it in-place
    	rapidjson::Document doc;
    	doc.ParseInsitu<0>(&text[0]);
    
    	if (doc.HasParseError()) {
    		if (mVerbose) {
    			std::clog << "Parse error in color correction JSON at character "
    				<< doc.GetErrorOffset() << ": " << doc.GetParseError() << "\n";
    		}
    		return;
        }
    
        /*
         * Successfully parsed the JSON. From here, it's handled identically to
         * objects that come through the config file.
         */
        writeColorCorrection(doc);
    }
    
    
    std::string FCDevice::getName()
    {
    	std::ostringstream s;
    	s << "Fadecandy (Serial# " << mSerial << ")";
    	return s.str();
    }