Newer
Older
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
* @brief Dot product of Q31 vectors.
* @param[in] *pSrcA points to the first input vector
* @param[in] *pSrcB points to the second input vector
* @param[in] blockSize number of samples in each vector
* @param[out] *result output result returned here
* @return none.
*/
void arm_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t blockSize,
q63_t * result);
/**
* @brief Shifts the elements of a Q7 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_shift_q7(
q7_t * pSrc,
int8_t shiftBits,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Shifts the elements of a Q15 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_shift_q15(
q15_t * pSrc,
int8_t shiftBits,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Shifts the elements of a Q31 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_shift_q31(
q31_t * pSrc,
int8_t shiftBits,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_offset_f32(
float32_t * pSrc,
float32_t offset,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a Q7 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_offset_q7(
q7_t * pSrc,
q7_t offset,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a Q15 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_offset_q15(
q15_t * pSrc,
q15_t offset,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Adds a constant offset to a Q31 vector.
* @param[in] *pSrc points to the input vector
* @param[in] offset is the offset to be added
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_offset_q31(
q31_t * pSrc,
q31_t offset,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a floating-point vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_negate_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a Q7 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_negate_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a Q15 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_negate_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Negates the elements of a Q31 vector.
* @param[in] *pSrc points to the input vector
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*/
void arm_negate_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a floating-point vector.
* @param[in] *pSrc input pointer
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_copy_f32(
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a Q7 vector.
* @param[in] *pSrc input pointer
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_copy_q7(
q7_t * pSrc,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a Q15 vector.
* @param[in] *pSrc input pointer
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_copy_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Copies the elements of a Q31 vector.
* @param[in] *pSrc input pointer
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_copy_q31(
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a floating-point vector.
* @param[in] value input value to be filled
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_fill_f32(
float32_t value,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a Q7 vector.
* @param[in] value input value to be filled
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_fill_q7(
q7_t value,
q7_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a Q15 vector.
* @param[in] value input value to be filled
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_fill_q15(
q15_t value,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Fills a constant value into a Q31 vector.
* @param[in] value input value to be filled
* @param[out] *pDst output pointer
* @param[in] blockSize number of samples to process
* @return none.
*/
void arm_fill_q31(
q31_t value,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Convolution of floating-point sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_f32(
float32_t * pSrcA,
uint32_t srcALen,
float32_t * pSrcB,
uint32_t srcBLen,
float32_t * pDst);
/**
* @brief Convolution of Q15 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
* @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
* @return none.
*/
void arm_conv_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Convolution of Q15 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst);
/**
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_fast_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst);
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
/**
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
* @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
* @return none.
*/
void arm_conv_fast_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Convolution of Q31 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst);
/**
* @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst);
/**
* @brief Convolution of Q7 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
* @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
* @return none.
*/
void arm_conv_opt_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Convolution of Q7 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
* @return none.
*/
void arm_conv_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst);
/**
* @brief Partial convolution of floating-point sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_f32(
float32_t * pSrcA,
uint32_t srcALen,
float32_t * pSrcB,
uint32_t srcBLen,
float32_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q15 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Partial convolution of Q15 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_fast_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
/**
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_fast_opt_q15(
q15_t * pSrcA,
uint32_t srcALen,
q15_t * pSrcB,
uint32_t srcBLen,
q15_t * pDst,
uint32_t firstIndex,
uint32_t numPoints,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Partial convolution of Q31 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_fast_q31(
q31_t * pSrcA,
uint32_t srcALen,
q31_t * pSrcB,
uint32_t srcBLen,
q31_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Partial convolution of Q7 sequences
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
* @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_opt_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst,
uint32_t firstIndex,
uint32_t numPoints,
q15_t * pScratch1,
q15_t * pScratch2);
/**
* @brief Partial convolution of Q7 sequences.
* @param[in] *pSrcA points to the first input sequence.
* @param[in] srcALen length of the first input sequence.
* @param[in] *pSrcB points to the second input sequence.
* @param[in] srcBLen length of the second input sequence.
* @param[out] *pDst points to the block of output data
* @param[in] firstIndex is the first output sample to start with.
* @param[in] numPoints is the number of output points to be computed.
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
*/
arm_status arm_conv_partial_q7(
q7_t * pSrcA,
uint32_t srcALen,
q7_t * pSrcB,
uint32_t srcBLen,
q7_t * pDst,
uint32_t firstIndex,
uint32_t numPoints);
/**
* @brief Instance structure for the Q15 FIR decimator.
*/
typedef struct
{
uint8_t M; /**< decimation factor. */
uint16_t numTaps; /**< number of coefficients in the filter. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_q15;
/**
* @brief Instance structure for the Q31 FIR decimator.
*/
typedef struct
{
uint8_t M; /**< decimation factor. */
uint16_t numTaps; /**< number of coefficients in the filter. */
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_q31;
/**
* @brief Instance structure for the floating-point FIR decimator.
*/
typedef struct
{
uint8_t M; /**< decimation factor. */
uint16_t numTaps; /**< number of coefficients in the filter. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
} arm_fir_decimate_instance_f32;
/**
* @brief Processing function for the floating-point FIR decimator.
* @param[in] *S points to an instance of the floating-point FIR decimator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
* @return none
*/
void arm_fir_decimate_f32(
const arm_fir_decimate_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point FIR decimator.
* @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
* @param[in] numTaps number of coefficients in the filter.
* @param[in] M decimation factor.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
arm_status arm_fir_decimate_init_f32(
arm_fir_decimate_instance_f32 * S,
uint16_t numTaps,
uint8_t M,
float32_t * pCoeffs,
float32_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q15 FIR decimator.
* @param[in] *S points to an instance of the Q15 FIR decimator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
* @return none
*/
void arm_fir_decimate_q15(
const arm_fir_decimate_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
* @param[in] *S points to an instance of the Q15 FIR decimator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
* @return none
*/
void arm_fir_decimate_fast_q15(
const arm_fir_decimate_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 FIR decimator.
* @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
* @param[in] numTaps number of coefficients in the filter.
* @param[in] M decimation factor.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
arm_status arm_fir_decimate_init_q15(
arm_fir_decimate_instance_q15 * S,
uint16_t numTaps,
uint8_t M,
q15_t * pCoeffs,
q15_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 FIR decimator.
* @param[in] *S points to an instance of the Q31 FIR decimator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
* @return none
*/
void arm_fir_decimate_q31(
const arm_fir_decimate_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
* @param[in] *S points to an instance of the Q31 FIR decimator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of input samples to process per call.
* @return none
*/
void arm_fir_decimate_fast_q31(
arm_fir_decimate_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 FIR decimator.
* @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
* @param[in] numTaps number of coefficients in the filter.
* @param[in] M decimation factor.
* @param[in] *pCoeffs points to the filter coefficients.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* <code>blockSize</code> is not a multiple of <code>M</code>.
*/
arm_status arm_fir_decimate_init_q31(
arm_fir_decimate_instance_q31 * S,
uint16_t numTaps,
uint8_t M,
q31_t * pCoeffs,
q31_t * pState,
uint32_t blockSize);
/**
* @brief Instance structure for the Q15 FIR interpolator.
*/
typedef struct
{
uint8_t L; /**< upsample factor. */
uint16_t phaseLength; /**< length of each polyphase filter component. */
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
} arm_fir_interpolate_instance_q15;
/**
* @brief Instance structure for the Q31 FIR interpolator.
*/
typedef struct
{
uint8_t L; /**< upsample factor. */
uint16_t phaseLength; /**< length of each polyphase filter component. */
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
} arm_fir_interpolate_instance_q31;
/**
* @brief Instance structure for the floating-point FIR interpolator.
*/
typedef struct
{
uint8_t L; /**< upsample factor. */
uint16_t phaseLength; /**< length of each polyphase filter component. */
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
} arm_fir_interpolate_instance_f32;
/**
* @brief Processing function for the Q15 FIR interpolator.
* @param[in] *S points to an instance of the Q15 FIR interpolator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of input samples to process per call.
* @return none.
*/
void arm_fir_interpolate_q15(
const arm_fir_interpolate_instance_q15 * S,
q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q15 FIR interpolator.
* @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
* @param[in] L upsample factor.
* @param[in] numTaps number of filter coefficients in the filter.
* @param[in] *pCoeffs points to the filter coefficient buffer.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
*/
arm_status arm_fir_interpolate_init_q15(
arm_fir_interpolate_instance_q15 * S,
uint8_t L,
uint16_t numTaps,
q15_t * pCoeffs,
q15_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the Q31 FIR interpolator.
* @param[in] *S points to an instance of the Q15 FIR interpolator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of input samples to process per call.
* @return none.
*/
void arm_fir_interpolate_q31(
const arm_fir_interpolate_instance_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the Q31 FIR interpolator.
* @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
* @param[in] L upsample factor.
* @param[in] numTaps number of filter coefficients in the filter.
* @param[in] *pCoeffs points to the filter coefficient buffer.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
*/
arm_status arm_fir_interpolate_init_q31(
arm_fir_interpolate_instance_q31 * S,
uint8_t L,
uint16_t numTaps,
q31_t * pCoeffs,
q31_t * pState,
uint32_t blockSize);
/**
* @brief Processing function for the floating-point FIR interpolator.
* @param[in] *S points to an instance of the floating-point FIR interpolator structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data.
* @param[in] blockSize number of input samples to process per call.
* @return none.
*/
void arm_fir_interpolate_f32(
const arm_fir_interpolate_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize);
/**
* @brief Initialization function for the floating-point FIR interpolator.
* @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
* @param[in] L upsample factor.
* @param[in] numTaps number of filter coefficients in the filter.
* @param[in] *pCoeffs points to the filter coefficient buffer.
* @param[in] *pState points to the state buffer.
* @param[in] blockSize number of input samples to process per call.
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
*/
arm_status arm_fir_interpolate_init_f32(
arm_fir_interpolate_instance_f32 * S,
uint8_t L,
uint16_t numTaps,
float32_t * pCoeffs,
float32_t * pState,
uint32_t blockSize);
/**
* @brief Instance structure for the high precision Q31 Biquad cascade filter.
*/
typedef struct
{
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
} arm_biquad_cas_df1_32x64_ins_q31;
/**
* @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
* @param[in] *pSrc points to the block of input data.
* @param[out] *pDst points to the block of output data
* @param[in] blockSize number of samples to process.
* @return none.
*/
void arm_biquad_cas_df1_32x64_q31(
const arm_biquad_cas_df1_32x64_ins_q31 * S,
q31_t * pSrc,
q31_t * pDst,
uint32_t blockSize);