Skip to content
Snippets Groups Projects
serial.c 8.44 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* Teensyduino Core Library
     * http://www.pjrc.com/teensy/
     * Copyright (c) 2013 PJRC.COM, LLC.
     *
     * Permission is hereby granted, free of charge, to any person obtaining
     * a copy of this software and associated documentation files (the
     * "Software"), to deal in the Software without restriction, including
     * without limitation the rights to use, copy, modify, merge, publish,
     * distribute, sublicense, and/or sell copies of the Software, and to
     * permit persons to whom the Software is furnished to do so, subject to
     * the following conditions:
     *
     * 1. The above copyright notice and this permission notice shall be 
     * included in all copies or substantial portions of the Software.
     *
     * 2. If the Software is incorporated into a build system that allows 
     * selection among a list of target devices, then similar target
     * devices manufactured by PJRC.COM must be included in the list of
     * target devices and selectable in the same manner.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     * SOFTWARE.
     */
    
    #include "mk20dx128.h"
    #include "serial.h"
    
    // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
    // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
    
    #define CORE_PIN0_CONFIG    PORTB_PCR16
    #define CORE_PIN1_CONFIG    PORTB_PCR17
    
    #define TX_BUFFER_SIZE 64
    //#define TX_BUFFER_SIZE 40
    static volatile uint8_t tx_buffer[TX_BUFFER_SIZE];
    static volatile uint8_t tx_buffer_head = 0;
    static volatile uint8_t tx_buffer_tail = 0;
    static volatile uint8_t transmitting = 0;
    
    #define RX_BUFFER_SIZE 64
    static volatile uint8_t rx_buffer[RX_BUFFER_SIZE];
    static volatile uint8_t rx_buffer_head = 0;
    static volatile uint8_t rx_buffer_tail = 0;
    
    
    #define C2_ENABLE       UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
    #define C2_TX_ACTIVE        C2_ENABLE | UART_C2_TIE
    #define C2_TX_COMPLETING    C2_ENABLE | UART_C2_TCIE
    #define C2_TX_INACTIVE      C2_ENABLE
    
    /*
     * Serial is only used early in startup, before jumping into RAM.
     * Keep this in the space between the IVT and FlashConfig, to save space.
     */
    #define SERIAL_SECTION __attribute__ ((section(".startup")))
    
    
    
        // Serial is used during early boot at 9600 baud. (Too slow to survive our 10ms WDT)
    
        watchdog_refresh();
    
    SERIAL_SECTION void serial_begin(uint32_t divisor)
    
        SIM_SCGC4 |= SIM_SCGC4_UART0;   // turn on clock, TODO: use bitband
        rx_buffer_head = 0;
        rx_buffer_tail = 0;
        tx_buffer_head = 0;
        tx_buffer_tail = 0;
        transmitting = 0;
        CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
        CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
        UART0_BDH = (divisor >> 13) & 0x1F;
        UART0_BDL = (divisor >> 5) & 0xFF;
        UART0_C4 = divisor & 0x1F;
        //UART0_C1 = 0;
        UART0_C1 = UART_C1_ILT;
        UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
        UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
        UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
        UART0_C2 = C2_TX_INACTIVE;
        NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
    
    SERIAL_SECTION void serial_end(void)
    
        if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
        serial_flush();
        NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
        UART0_C2 = 0;
        CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
        CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
        rx_buffer_head = 0;
        rx_buffer_tail = 0;
    
    SERIAL_SECTION void serial_putchar(uint8_t c)
    
        uint32_t head;
    
        if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
        head = tx_buffer_head;
        if (++head >= TX_BUFFER_SIZE) head = 0;
        while (tx_buffer_tail == head) {
            yield(); // wait
        }
        tx_buffer[head] = c;
        transmitting = 1;
        tx_buffer_head = head;
        UART0_C2 = C2_TX_ACTIVE;
    
    SERIAL_SECTION void serial_write(const void *buf, unsigned int count)
    
        // Optimized for size rather than efficiency
        const uint8_t *buf8 = buf;
        while (count--) {
            serial_putchar(*buf8);
            buf8++;
        }
    
    SERIAL_SECTION void serial_flush(void)
    
        while (transmitting) {
            yield();
        }
    
        uint8_t head, tail;
    
        head = rx_buffer_head;
        tail = rx_buffer_tail;
        if (head >= tail) return head - tail;
        return RX_BUFFER_SIZE + head - tail;
    
        uint8_t head, tail;
        int c;
    
        head = rx_buffer_head;
        tail = rx_buffer_tail;
        if (head == tail) return -1;
        if (++tail >= RX_BUFFER_SIZE) tail = 0;
        c = rx_buffer[tail];
        rx_buffer_tail = tail;
        return c;
    
        uint8_t head, tail;
    
        head = rx_buffer_head;
        tail = rx_buffer_tail;
        if (head == tail) return -1;
        return rx_buffer[tail];
    
        if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
        UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
        UART0_CFIFO = UART_CFIFO_RXFLUSH;
        UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
        rx_buffer_head = rx_buffer_tail;
    
    }
    
    // status interrupt combines 
    //   Transmit data below watermark  UART_S1_TDRE
    //   Transmit complete              UART_S1_TC
    //   Idle line                      UART_S1_IDLE
    //   Receive data above watermark   UART_S1_RDRF
    //   LIN break detect               UART_S2_LBKDIF
    //   RxD pin active edge            UART_S2_RXEDGIF
    
    void uart0_status_isr(void)
    {
    
        uint8_t avail, head, newhead, tail, c;
    
        if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
            __disable_irq();
            avail = UART0_RCFIFO;
            if (avail == 0) {
                // The only way to clear the IDLE interrupt flag is
                // to read the data register.  But reading with no
                // data causes a FIFO underrun, which causes the
                // FIFO to return corrupted data.  If anyone from
                // Freescale reads this, what a poor design!  There
                // write should be a write-1-to-clear for IDLE.
                c = UART0_D;
                // flushing the fifo recovers from the underrun,
                // but there's a possible race condition where a
                // new character could be received between reading
                // RCFIFO == 0 and flushing the FIFO.  To minimize
                // the chance, interrupts are disabled so a higher
                // priority interrupt (hopefully) doesn't delay.
                // TODO: change this to disabling the IDLE interrupt
                // which won't be simple, since we already manage
                // which transmit interrupts are enabled.
                UART0_CFIFO = UART_CFIFO_RXFLUSH;
                __enable_irq();
            } else {
                __enable_irq();
                head = rx_buffer_head;
                tail = rx_buffer_tail;
                do {
                    c = UART0_D;
                    newhead = head + 1;
                    if (newhead >= RX_BUFFER_SIZE) newhead = 0;
                    if (newhead != tail) {
                        head = newhead;
                        rx_buffer[head] = c;
                    }
                } while (--avail > 0);
                rx_buffer_head = head;
            }
        }
        c = UART0_C2;
        if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
            head = tx_buffer_head;
            tail = tx_buffer_tail;
            do {
                if (tail == head) break;
                if (++tail >= TX_BUFFER_SIZE) tail = 0;
                avail = UART0_S1;
                UART0_D = tx_buffer[tail];
            } while (UART0_TCFIFO < 8);
            tx_buffer_tail = tail;
            if (UART0_S1 & UART_S1_TDRE) UART0_C2 = C2_TX_COMPLETING;
        }
        if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
            transmitting = 0;
            UART0_C2 = C2_TX_INACTIVE;
        }
    
        while (*p) {
            char c = *p++;
            if (c == '\n') serial_putchar('\r');
            serial_putchar(c);
        }
    
        n &= 15;
        if (n < 10) {
            serial_putchar('0' + n);
        } else {
            serial_putchar('A' - 10 + n);
        }
    
        serial_phex1(n >> 4);
        serial_phex1(n);
    
        serial_phex(n >> 8);
        serial_phex(n);
    
        serial_phex(n >> 24);
        serial_phex(n >> 16);
        serial_phex(n >> 8);
        serial_phex(n);