Skip to content
Snippets Groups Projects
serial1.c 7.77 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* Teensyduino Core Library
     * http://www.pjrc.com/teensy/
     * Copyright (c) 2013 PJRC.COM, LLC.
     *
     * Permission is hereby granted, free of charge, to any person obtaining
     * a copy of this software and associated documentation files (the
     * "Software"), to deal in the Software without restriction, including
     * without limitation the rights to use, copy, modify, merge, publish,
     * distribute, sublicense, and/or sell copies of the Software, and to
     * permit persons to whom the Software is furnished to do so, subject to
     * the following conditions:
     *
     * 1. The above copyright notice and this permission notice shall be 
     * included in all copies or substantial portions of the Software.
     *
     * 2. If the Software is incorporated into a build system that allows 
     * selection among a list of target devices, then similar target
     * devices manufactured by PJRC.COM must be included in the list of
     * target devices and selectable in the same manner.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     * SOFTWARE.
     */
    
    #include "mk20dx128.h"
    #include "core_pins.h"
    #include "HardwareSerial.h"
    
    // UART0 and UART1 are clocked by F_CPU, UART2 is clocked by F_BUS
    // UART0 has 8 byte fifo, UART1 and UART2 have 1 byte buffer
    
    
    #define TX_BUFFER_SIZE 8
    
    Micah Elizabeth Scott's avatar
    Micah Elizabeth Scott committed
    static volatile FLEXRAM_DATA uint8_t tx_buffer[TX_BUFFER_SIZE];
    static volatile FLEXRAM_DATA uint8_t tx_buffer_head = 0;
    static volatile FLEXRAM_DATA uint8_t tx_buffer_tail = 0;
    static volatile FLEXRAM_DATA uint8_t transmitting = 0;
    
    #define RX_BUFFER_SIZE 8
    
    Micah Elizabeth Scott's avatar
    Micah Elizabeth Scott committed
    static volatile FLEXRAM_DATA uint8_t rx_buffer[RX_BUFFER_SIZE];
    static volatile FLEXRAM_DATA uint8_t rx_buffer_head = 0;
    static volatile FLEXRAM_DATA uint8_t rx_buffer_tail = 0;
    
    
    #define C2_ENABLE		UART_C2_TE | UART_C2_RE | UART_C2_RIE | UART_C2_ILIE
    #define C2_TX_ACTIVE		C2_ENABLE | UART_C2_TIE
    #define C2_TX_COMPLETING	C2_ENABLE | UART_C2_TCIE
    #define C2_TX_INACTIVE		C2_ENABLE
    
    static inline void yield()
    {
    	watchdog_refresh();
    }
    
    void serial_begin(uint32_t divisor)
    {
    	SIM_SCGC4 |= SIM_SCGC4_UART0;	// turn on clock, TODO: use bitband
    	rx_buffer_head = 0;
    	rx_buffer_tail = 0;
    	tx_buffer_head = 0;
    	tx_buffer_tail = 0;
    	transmitting = 0;
    	CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_PFE | PORT_PCR_MUX(3);
    	CORE_PIN1_CONFIG = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(3);
    	UART0_BDH = (divisor >> 13) & 0x1F;
    	UART0_BDL = (divisor >> 5) & 0xFF;
    	UART0_C4 = divisor & 0x1F;
    	//UART0_C1 = 0;
    	UART0_C1 = UART_C1_ILT;
    	UART0_TWFIFO = 2; // tx watermark, causes S1_TDRE to set
    	UART0_RWFIFO = 4; // rx watermark, causes S1_RDRF to set
    	UART0_PFIFO = UART_PFIFO_TXFE | UART_PFIFO_RXFE;
    	UART0_C2 = C2_TX_INACTIVE;
    	NVIC_ENABLE_IRQ(IRQ_UART0_STATUS);
    }
    
    void serial_end(void)
    {
    	if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
    	while (transmitting) yield();  // wait for buffered data to send
    	NVIC_DISABLE_IRQ(IRQ_UART0_STATUS);
    	UART0_C2 = 0;
    	CORE_PIN0_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
    	CORE_PIN1_CONFIG = PORT_PCR_PE | PORT_PCR_PS | PORT_PCR_MUX(1);
    	rx_buffer_head = 0;
    	rx_buffer_tail = 0;
    }
    
    void serial_putchar(uint8_t c)
    {
    	uint32_t head;
    
    	if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
    	head = tx_buffer_head;
    	if (++head >= TX_BUFFER_SIZE) head = 0;
    	while (tx_buffer_tail == head) {
    		yield(); // wait
    	}
    	tx_buffer[head] = c;
    	transmitting = 1;
    	tx_buffer_head = head;
    	UART0_C2 = C2_TX_ACTIVE;
    }
    
    void serial_write(const void *buf, unsigned int count)
    {
    	const uint8_t *p = (const uint8_t *)buf;
    	const uint8_t *end = p + count;
            uint32_t head;
    
            if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
    	while (p < end) {
            	head = tx_buffer_head;
            	if (++head >= TX_BUFFER_SIZE) head = 0;
    		if (tx_buffer_tail == head) {
            		UART0_C2 = C2_TX_ACTIVE;
    			do {
    				yield(); // wait
    			} while (tx_buffer_tail == head);
    		}
            	tx_buffer[head] = *p++;
            	transmitting = 1;
            	tx_buffer_head = head;
    	}
            UART0_C2 = C2_TX_ACTIVE;
    }
    
    void serial_flush(void)
    {
    	while (transmitting) yield(); // wait
    }
    
    int serial_available(void)
    {
    	uint8_t head, tail;
    
    	head = rx_buffer_head;
    	tail = rx_buffer_tail;
    	if (head >= tail) return head - tail;
    	return RX_BUFFER_SIZE + head - tail;
    }
    
    int serial_getchar(void)
    {
    	uint8_t head, tail;
    	int c;
    
    	head = rx_buffer_head;
    	tail = rx_buffer_tail;
    	if (head == tail) return -1;
    	if (++tail >= RX_BUFFER_SIZE) tail = 0;
    	c = rx_buffer[tail];
    	rx_buffer_tail = tail;
    	return c;
    }
    
    int serial_peek(void)
    {
    	uint8_t head, tail;
    
    	head = rx_buffer_head;
    	tail = rx_buffer_tail;
    	if (head == tail) return -1;
    	return rx_buffer[tail];
    }
    
    void serial_clear(void)
    {
    	if (!(SIM_SCGC4 & SIM_SCGC4_UART0)) return;
    	UART0_C2 &= ~(UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
    	UART0_CFIFO = UART_CFIFO_RXFLUSH;
    	UART0_C2 |= (UART_C2_RE | UART_C2_RIE | UART_C2_ILIE);
    	rx_buffer_head = rx_buffer_tail;
    }
    
    // status interrupt combines 
    //   Transmit data below watermark  UART_S1_TDRE
    //   Transmit complete              UART_S1_TC
    //   Idle line                      UART_S1_IDLE
    //   Receive data above watermark   UART_S1_RDRF
    //   LIN break detect               UART_S2_LBKDIF
    //   RxD pin active edge            UART_S2_RXEDGIF
    
    void uart0_status_isr(void)
    {
    	uint8_t avail, head, newhead, tail, c;
    
    	if (UART0_S1 & (UART_S1_RDRF | UART_S1_IDLE)) {
    		__disable_irq();
    		avail = UART0_RCFIFO;
    		if (avail == 0) {
    			// The only way to clear the IDLE interrupt flag is
    			// to read the data register.  But reading with no
    			// data causes a FIFO underrun, which causes the
    			// FIFO to return corrupted data.  If anyone from
    			// Freescale reads this, what a poor design!  There
    			// write should be a write-1-to-clear for IDLE.
    			c = UART0_D;
    			// flushing the fifo recovers from the underrun,
    			// but there's a possible race condition where a
    			// new character could be received between reading
    			// RCFIFO == 0 and flushing the FIFO.  To minimize
    			// the chance, interrupts are disabled so a higher
    			// priority interrupt (hopefully) doesn't delay.
    			// TODO: change this to disabling the IDLE interrupt
    			// which won't be simple, since we already manage
    			// which transmit interrupts are enabled.
    			UART0_CFIFO = UART_CFIFO_RXFLUSH;
    			__enable_irq();
    		} else {
    			__enable_irq();
    			head = rx_buffer_head;
    			tail = rx_buffer_tail;
    			do {
    				c = UART0_D;
    				newhead = head + 1;
    				if (newhead >= RX_BUFFER_SIZE) newhead = 0;
    				if (newhead != tail) {
    					head = newhead;
    					rx_buffer[head] = c;
    				}
    			} while (--avail > 0);
    			rx_buffer_head = head;
    		}
    	}
    	c = UART0_C2;
    	if ((c & UART_C2_TIE) && (UART0_S1 & UART_S1_TDRE)) {
    		head = tx_buffer_head;
    		tail = tx_buffer_tail;
    		do {
    			if (tail == head) break;
    			if (++tail >= TX_BUFFER_SIZE) tail = 0;
    			avail = UART0_S1;
    			UART0_D = tx_buffer[tail];
    		} while (UART0_TCFIFO < 8);
    		tx_buffer_tail = tail;
    		if (UART0_S1 & UART_S1_TDRE) UART0_C2 = C2_TX_COMPLETING;
    	}
    	if ((c & UART_C2_TCIE) && (UART0_S1 & UART_S1_TC)) {
    		transmitting = 0;
    		UART0_C2 = C2_TX_INACTIVE;
    	}
    }
    
    
    
    void serial_print(const char *p)
    {
    	while (*p) {
    		char c = *p++;
    		if (c == '\n') serial_putchar('\r');
    		serial_putchar(c);
    	}
    }
    
    static void serial_phex1(uint32_t n)
    {
    	n &= 15;
    	if (n < 10) {
    		serial_putchar('0' + n);
    	} else {
    		serial_putchar('A' - 10 + n);
    	}
    }
    
    void serial_phex(uint32_t n)
    {
    	serial_phex1(n >> 4);
    	serial_phex1(n);
    }
    
    void serial_phex16(uint32_t n)
    {
    	serial_phex(n >> 8);
    	serial_phex(n);
    }
    
    void serial_phex32(uint32_t n)
    {
    	serial_phex(n >> 24);
    	serial_phex(n >> 16);
    	serial_phex(n >> 8);
    	serial_phex(n);
    }