/* * Fadecandy device interface * * Copyright (c) 2013 Micah Elizabeth Scott * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "fcdevice.h" #include "opc.h" #include <math.h> #include <iostream> #include <sstream> #include <stdio.h> FCDevice::Transfer::Transfer(FCDevice *device, void *buffer, int length, PacketType type) : transfer(libusb_alloc_transfer(0)), type(type), finished(false) { libusb_fill_bulk_transfer(transfer, device->mHandle, OUT_ENDPOINT, (uint8_t*) buffer, length, FCDevice::completeTransfer, this, 2000); } FCDevice::Transfer::~Transfer() { libusb_free_transfer(transfer); } FCDevice::FCDevice(libusb_device *device, bool verbose) : USBDevice(device, verbose), mConfigMap(0), mNumFramesPending(0), mFrameWaitingForSubmit(false) { mSerial[0] = '\0'; memset(&mFirmwareConfig, 0, sizeof mFirmwareConfig); mFirmwareConfig.control = TYPE_CONFIG; // Framebuffer headers memset(mFramebuffer, 0, sizeof mFramebuffer); for (unsigned i = 0; i < FRAMEBUFFER_PACKETS; ++i) { mFramebuffer[i].control = TYPE_FRAMEBUFFER | i; } mFramebuffer[FRAMEBUFFER_PACKETS - 1].control |= FINAL; // Color LUT headers memset(mColorLUT, 0, sizeof mColorLUT); for (unsigned i = 0; i < LUT_PACKETS; ++i) { mColorLUT[i].control = TYPE_LUT | i; } mColorLUT[LUT_PACKETS - 1].control |= FINAL; } FCDevice::~FCDevice() { /* * If we have pending transfers, cancel them. * The Transfer objects themselves will be freed * once libusb completes them. */ for (std::set<Transfer*>::iterator i = mPending.begin(), e = mPending.end(); i != e; ++i) { Transfer *fct = *i; libusb_cancel_transfer(fct->transfer); } } bool FCDevice::probe(libusb_device *device) { libusb_device_descriptor dd; if (libusb_get_device_descriptor(device, &dd) < 0) { // Can't access descriptor? return false; } return dd.idVendor == 0x1d50 && dd.idProduct == 0x607a; } int FCDevice::open() { int r = libusb_get_device_descriptor(mDevice, &mDD); if (r < 0) { return r; } r = libusb_open(mDevice, &mHandle); if (r < 0) { return r; } r = libusb_claim_interface(mHandle, 0); if (r < 0) { return r; } return libusb_get_string_descriptor_ascii(mHandle, mDD.iSerialNumber, (uint8_t*)mSerial, sizeof mSerial); } bool FCDevice::matchConfiguration(const Value &config) { if (matchConfigurationWithTypeAndSerial(config, "fadecandy", mSerial)) { mConfigMap = findConfigMap(config); configureDevice(config); return true; } return false; } void FCDevice::configureDevice(const Value &config) { /* * Send a device configuration settings packet, using the default values in our * JSON config file. This can be overridden over OPC later on. */ const Value &led = config["led"]; if (!(led.IsTrue() || led.IsFalse() || led.IsNull())) { std::clog << "LED configuration must be true (always on), false (always off), or null (default).\n"; } mFirmwareConfig.data[0] = (led.IsNull() ? 0 : CFLAG_NO_ACTIVITY_LED) | (led.IsTrue() ? CFLAG_LED_CONTROL : 0) ; writeFirmwareConfiguration(); } bool FCDevice::submitTransfer(Transfer *fct) { /* * Submit a new USB transfer. The Transfer object is guaranteed to be freed eventually. * On error, it's freed right away. */ int r = libusb_submit_transfer(fct->transfer); if (r < 0) { if (mVerbose && r != LIBUSB_ERROR_PIPE) { std::clog << "Error submitting USB transfer: " << libusb_strerror(libusb_error(r)) << "\n"; } delete fct; return false; } else { mPending.insert(fct); return true; } } void FCDevice::completeTransfer(libusb_transfer *transfer) { FCDevice::Transfer *fct = static_cast<FCDevice::Transfer*>(transfer->user_data); fct->finished = true; } void FCDevice::flush() { // Erase any finished transfers std::set<Transfer*>::iterator current = mPending.begin(); while (current != mPending.end()) { std::set<Transfer*>::iterator next = current; next++; Transfer *fct = *current; if (fct->finished) { switch (fct->type) { case FRAME: mNumFramesPending--; break; default: break; } mPending.erase(current); delete fct; } current = next; } // Submit new frames, if we had a queued frame waiting if (mFrameWaitingForSubmit && mNumFramesPending < MAX_FRAMES_PENDING) { writeFramebuffer(); } } void FCDevice::writeColorCorrection(const Value &color) { /* * Populate the color correction table based on a JSON configuration object, * and send the new color LUT out over USB. * * 'color' may be 'null' to load an identity-mapped LUT, or it may be * a dictionary of options including 'gamma' and 'whitepoint'. * * This calculates a compound curve with a linear section and a nonlinear * section. The linear section, near zero, avoids creating very low output * values that will cause distracting flicker when dithered. This isn't a problem * when the LEDs are viewed indirectly such that the flicker is below the threshold * of perception, but in cases where the flicker is a problem this linear section can * eliminate it entierly at the cost of some dynamic range. * * By default, the linear section is disabled (linearCutoff is zero). To enable the * linear section, set linearCutoff to some nonzero value. A good starting point is * 1/256.0, correspnding to the lowest 8-bit PWM level. */ // Default color LUT parameters double gamma = 1.0; // Power for nonlinear portion of curve double whitepoint[3] = {1.0, 1.0, 1.0}; // White-point RGB value (also, global brightness) double linearSlope = 1.0; // Slope (output / input) of linear section of the curve, near zero double linearCutoff = 0.0; // Y (output) coordinate of intersection of linear and nonlinear curves /* * Parse the JSON object */ if (color.IsObject()) { const Value &vGamma = color["gamma"]; const Value &vWhitepoint = color["whitepoint"]; const Value &vLinearSlope = color["linearSlope"]; const Value &vLinearCutoff = color["linearCutoff"]; if (vGamma.IsNumber()) { gamma = vGamma.GetDouble(); } else if (!vGamma.IsNull() && mVerbose) { std::clog << "Gamma value must be a number.\n"; } if (vLinearSlope.IsNumber()) { linearSlope = vLinearSlope.GetDouble(); } else if (!vLinearSlope.IsNull() && mVerbose) { std::clog << "Linear slope value must be a number.\n"; } if (vLinearCutoff.IsNumber()) { linearCutoff = vLinearCutoff.GetDouble(); } else if (!vLinearCutoff.IsNull() && mVerbose) { std::clog << "Linear slope value must be a number.\n"; } if (vWhitepoint.IsArray() && vWhitepoint.Size() == 3 && vWhitepoint[0u].IsNumber() && vWhitepoint[1].IsNumber() && vWhitepoint[2].IsNumber()) { whitepoint[0] = vWhitepoint[0u].GetDouble(); whitepoint[1] = vWhitepoint[1].GetDouble(); whitepoint[2] = vWhitepoint[2].GetDouble(); } else if (!vWhitepoint.IsNull() && mVerbose) { std::clog << "Whitepoint value must be a list of 3 numbers.\n"; } } else if (!color.IsNull() && mVerbose) { std::clog << "Color correction value must be a JSON dictionary object.\n"; } /* * Calculate the color LUT, stowing the result in an array of USB packets. */ Packet *packet = mColorLUT; const unsigned firstByteOffset = 1; // Skip padding byte unsigned byteOffset = firstByteOffset; for (unsigned channel = 0; channel < 3; channel++) { for (unsigned entry = 0; entry < LUT_ENTRIES; entry++) { double output; /* * Normalized input value corresponding to this LUT entry. * Ranges from 0 to slightly higher than 1. (The last LUT entry * can't quite be reached.) */ double input = (entry << 8) / 65535.0; // Scale by whitepoint before anything else input *= whitepoint[channel]; // Is this entry part of the linear section still? if (input * linearSlope <= linearCutoff) { // Output value is below linearCutoff. We're still in the linear portion of the curve output = input * linearSlope; } else { // Nonlinear portion of the curve. This starts right where the linear portion leaves // off. We need to avoid any discontinuity. double nonlinearInput = input - (linearSlope * linearCutoff); double scale = 1.0 - linearCutoff; output = linearCutoff + pow(nonlinearInput / scale, gamma) * scale; } // Round to the nearest integer, and clamp. Overflow-safe. int64_t longValue = (output * 0xFFFF) + 0.5; int intValue = std::max<int64_t>(0, std::min<int64_t>(0xFFFF, longValue)); // Store LUT entry, little-endian order. packet->data[byteOffset++] = uint8_t(intValue); packet->data[byteOffset++] = uint8_t(intValue >> 8); if (byteOffset >= sizeof packet->data) { byteOffset = firstByteOffset; packet++; } } } // Start asynchronously sending the LUT. submitTransfer(new Transfer(this, &mColorLUT, sizeof mColorLUT)); } void FCDevice::writeFramebuffer() { /* * Asynchronously write the current framebuffer. * Note that the OS will copy our framebuffer at submit-time. * * TODO: Currently if this gets ahead of what the USB device is capable of, * we always drop frames. Alternatively, it would be nice to have end-to-end * flow control so that the client can produce frames slower. */ if (mNumFramesPending >= MAX_FRAMES_PENDING) { // Too many outstanding frames. Wait to submit until a previous frame completes. mFrameWaitingForSubmit = true; return; } if (submitTransfer(new Transfer(this, &mFramebuffer, sizeof mFramebuffer, FRAME))) { mFrameWaitingForSubmit = false; mNumFramesPending++; } } void FCDevice::writeMessage(const OPC::Message &msg) { /* * Dispatch an incoming OPC command */ switch (msg.command) { case OPC::SetPixelColors: opcSetPixelColors(msg); writeFramebuffer(); return; case OPC::SystemExclusive: opcSysEx(msg); return; } if (mVerbose) { std::clog << "Unsupported OPC command: " << unsigned(msg.command) << "\n"; } } void FCDevice::opcSysEx(const OPC::Message &msg) { if (msg.length() < 4) { if (mVerbose) { std::clog << "SysEx message too short!\n"; } return; } unsigned id = (unsigned(msg.data[0]) << 24) | (unsigned(msg.data[1]) << 16) | (unsigned(msg.data[2]) << 8) | unsigned(msg.data[3]) ; switch (id) { case OPC::FCSetGlobalColorCorrection: return opcSetGlobalColorCorrection(msg); case OPC::FCSetFirmwareConfiguration: return opcSetFirmwareConfiguration(msg); } // Quietly ignore unhandled SysEx messages. } void FCDevice::opcSetPixelColors(const OPC::Message &msg) { /* * Parse through our device's mapping, and store any relevant portions of 'msg' * in the framebuffer. */ if (!mConfigMap) { // No mapping defined yet. This device is inactive. return; } const Value &map = *mConfigMap; for (unsigned i = 0, e = map.Size(); i != e; i++) { opcMapPixelColors(msg, map[i]); } } void FCDevice::opcMapPixelColors(const OPC::Message &msg, const Value &inst) { /* * Parse one JSON mapping instruction, and copy any relevant parts of 'msg' * into our framebuffer. This looks for any mapping instructions that we * recognize: * * [ OPC Channel, First OPC Pixel, First output pixel, pixel count ] */ unsigned msgPixelCount = msg.length() / 3; if (inst.IsArray() && inst.Size() == 4) { // Map a range from an OPC channel to our framebuffer const Value &vChannel = inst[0u]; const Value &vFirstOPC = inst[1]; const Value &vFirstOut = inst[2]; const Value &vCount = inst[3]; if (vChannel.IsUint() && vFirstOPC.IsUint() && vFirstOut.IsUint() && vCount.IsUint()) { unsigned channel = vChannel.GetUint(); unsigned firstOPC = vFirstOPC.GetUint(); unsigned firstOut = vFirstOut.GetUint(); unsigned count = vCount.GetUint(); if (channel != msg.channel) { return; } // Clamping, overflow-safe firstOPC = std::min<unsigned>(firstOPC, msgPixelCount); firstOut = std::min<unsigned>(firstOut, unsigned(NUM_PIXELS)); count = std::min<unsigned>(count, msgPixelCount - firstOPC); count = std::min<unsigned>(count, NUM_PIXELS - firstOut); // Copy pixels const uint8_t *inPtr = msg.data + (firstOPC * 3); unsigned outIndex = firstOut; while (count--) { uint8_t *outPtr = fbPixel(outIndex++); outPtr[0] = inPtr[0]; outPtr[1] = inPtr[1]; outPtr[2] = inPtr[2]; inPtr += 3; } return; } } // Still haven't found a match? if (mVerbose) { std::clog << "Unsupported JSON mapping instruction\n"; } } void FCDevice::opcSetGlobalColorCorrection(const OPC::Message &msg) { /* * Parse the message as JSON text, and if successful, write new * color correction data to the device. */ // Mutable NUL-terminated copy of the message string std::string text((char*)msg.data + 4, msg.length() - 4); // Parse it in-place rapidjson::Document doc; doc.ParseInsitu<0>(&text[0]); if (doc.HasParseError()) { if (mVerbose) { std::clog << "Parse error in color correction JSON at character " << doc.GetErrorOffset() << ": " << doc.GetParseError() << "\n"; } return; } /* * Successfully parsed the JSON. From here, it's handled identically to * objects that come through the config file. */ writeColorCorrection(doc); } void FCDevice::opcSetFirmwareConfiguration(const OPC::Message &msg) { /* * Raw firmware configuration packet */ memcpy(mFirmwareConfig.data, msg.data + 4, std::min<size_t>(sizeof mFirmwareConfig.data, msg.length() - 4)); writeFirmwareConfiguration(); } void FCDevice::writeFirmwareConfiguration() { // Write mFirmwareConfig to the device submitTransfer(new Transfer(this, &mFirmwareConfig, sizeof mFirmwareConfig)); } std::string FCDevice::getName() { std::ostringstream s; s << "Fadecandy"; if (mSerial[0]) { unsigned major = mDD.bcdDevice >> 8; unsigned minor = mDD.bcdDevice & 0xFF; char version[10]; snprintf(version, sizeof version, "%x.%02x", major, minor); s << " (Serial# " << mSerial << ", Version " << version << ")"; } return s.str(); }