/* * Fadecandy Firmware * * Copyright (c) 2013 Micah Elizabeth Scott * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include <math.h> #include <algorithm> #include "OctoWS2811z.h" #include "arm_math.h" #include "fc_usb.h" #include "fc_defs.h" // USB data buffers static fcBuffers buffers; // Double-buffered DMA memory for raw bit planes of output static DMAMEM int ledBuffer[LEDS_PER_STRIP * 12]; static OctoWS2811z leds(LEDS_PER_STRIP, ledBuffer, WS2811_800kHz); // Residuals for temporal dithering static int8_t residual[CHANNELS_TOTAL]; ALWAYS_INLINE static inline uint32_t lutInterpolate(const uint16_t *lut, uint32_t arg) { /* * Using our color LUT for the indicated channel, convert the * 16-bit intensity "arg" in our input colorspace to a corresponding * 16-bit intensity in the device colorspace. */ unsigned index = arg >> 8; unsigned alpha = arg & 0xFF; unsigned invAlpha = 0x100 - alpha; return (lut[index] * invAlpha + lut[index + 1] * alpha) >> 8; } static inline uint32_t updatePixel(uint32_t icPrev, uint32_t icNext, unsigned n) { /* * Update pipeline for one pixel: * * 1. Interpolate framebuffer * 2. Interpolate LUT * 3. Dithering */ const uint8_t *pixelPrev = buffers.fbPrev->pixel(n); const uint8_t *pixelNext = buffers.fbNext->pixel(n); // Per-channel linear interpolation and conversion to 16-bit color. int iR = (pixelPrev[0] * icPrev + pixelNext[0] * icNext) >> 16; int iG = (pixelPrev[1] * icPrev + pixelNext[1] * icNext) >> 16; int iB = (pixelPrev[2] * icPrev + pixelNext[2] * icNext) >> 16; // Pass through our color LUT iR = lutInterpolate(&buffers.lutCurrent[0 * 256], iR); iG = lutInterpolate(&buffers.lutCurrent[1 * 256], iG); iB = lutInterpolate(&buffers.lutCurrent[2 * 256], iB); // Pointer to the residual buffer for this pixel int8_t *pResidual = &residual[n * 3]; // Incorporate the residual from last frame iR += pResidual[0]; iG += pResidual[1]; iB += pResidual[2]; /* * Round to the nearest 8-bit value. Clamping is necessary! * This value might be as low as -128 prior to adding 0x80 * for rounding. After this addition, the result is guaranteed * to be >= 0, but it may be over 0xffff. * * This rules out clamping using the UQADD16 instruction, * since the addition itself needs to allow overflow. Instead, * we clamp using a separate USAT instruction. */ int r8 = __USAT(iR + 0x80, 16) >> 8; int g8 = __USAT(iG + 0x80, 16) >> 8; int b8 = __USAT(iB + 0x80, 16) >> 8; /* * Compute the error, after expanding the 8-bit value back to 16-bit. * Clamping (e.g. via __SSAT) is not necessary, since the error will not * be greater than +/- 127. */ pResidual[0] = iR - (r8 * 257); pResidual[1] = iG - (g8 * 257); pResidual[2] = iB - (b8 * 257); // Pack the result, in GRB order. return (g8 << 16) | (r8 << 8) | b8; } static void updateDrawBuffer(unsigned interpCoefficient) { /* * Update the LED draw buffer. In one step, we do the interpolation, * gamma correction, dithering, and we convert packed-pixel data to the * planar format used for OctoWS2811 DMAs. * * "interpCoefficient" indicates how far between fbPrev and fbNext * we are. It is a fixed point value in the range [0x0000, 0x10000], * corresponding to 100% fbPrev and 100% fbNext, respectively. */ // For each pixel, this is a 24-byte stream of bits (6 words) uint32_t *out = (uint32_t*) leds.getDrawBuffer(); // Interpolation coefficients, including a multiply by 257 to convert 8-bit color to 16-bit color. uint32_t icPrev = 257 * (0x10000 - interpCoefficient); uint32_t icNext = 257 * interpCoefficient; for (int i = 0; i < LEDS_PER_STRIP; ++i) { // Eight bit planes union { uint32_t word; struct { uint32_t x0:1, x1:1, x2:1, x3:1, x4:1, x5:1, x6:1, x7:1, y0:1, y1:1, y2:1, y3:1, y4:1, y5:1, y6:1, y7:1, z0:1, z1:1, z2:1, z3:1, z4:1, z5:1, z6:1, z7:1, spare:8; }; } p0, p1, p2, p3, p4, p5, p6, p7; // Six output words union { uint32_t word; struct { uint32_t p0a:1, p1a:1, p2a:1, p3a:1, p4a:1, p5a:1, p6a:1, p7a:1, p0b:1, p1b:1, p2b:1, p3b:1, p4b:1, p5b:1, p6b:1, p7b:1, p0c:1, p1c:1, p2c:1, p3c:1, p4c:1, p5c:1, p6c:1, p7c:1, p0d:1, p1d:1, p2d:1, p3d:1, p4d:1, p5d:1, p6d:1, p7d:1; }; } o0, o1, o2, o3, o4, o5; /* * Remap bits. * This generates fairly efficient code using the UBFX and BFI instructions. */ p0.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 0); o5.p0d = p0.x0; o5.p0c = p0.x1; o5.p0b = p0.x2; o5.p0a = p0.x3; o4.p0d = p0.x4; o4.p0c = p0.x5; o4.p0b = p0.x6; o4.p0a = p0.x7; o3.p0d = p0.y0; o3.p0c = p0.y1; o3.p0b = p0.y2; o3.p0a = p0.y3; o2.p0d = p0.y4; o2.p0c = p0.y5; o2.p0b = p0.y6; o2.p0a = p0.y7; o1.p0d = p0.z0; o1.p0c = p0.z1; o1.p0b = p0.z2; o1.p0a = p0.z3; o0.p0d = p0.z4; o0.p0c = p0.z5; o0.p0b = p0.z6; o0.p0a = p0.z7; p1.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 1); o5.p1d = p1.x0; o5.p1c = p1.x1; o5.p1b = p1.x2; o5.p1a = p1.x3; o4.p1d = p1.x4; o4.p1c = p1.x5; o4.p1b = p1.x6; o4.p1a = p1.x7; o3.p1d = p1.y0; o3.p1c = p1.y1; o3.p1b = p1.y2; o3.p1a = p1.y3; o2.p1d = p1.y4; o2.p1c = p1.y5; o2.p1b = p1.y6; o2.p1a = p1.y7; o1.p1d = p1.z0; o1.p1c = p1.z1; o1.p1b = p1.z2; o1.p1a = p1.z3; o0.p1d = p1.z4; o0.p1c = p1.z5; o0.p1b = p1.z6; o0.p1a = p1.z7; p2.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 2); o5.p2d = p2.x0; o5.p2c = p2.x1; o5.p2b = p2.x2; o5.p2a = p2.x3; o4.p2d = p2.x4; o4.p2c = p2.x5; o4.p2b = p2.x6; o4.p2a = p2.x7; o3.p2d = p2.y0; o3.p2c = p2.y1; o3.p2b = p2.y2; o3.p2a = p2.y3; o2.p2d = p2.y4; o2.p2c = p2.y5; o2.p2b = p2.y6; o2.p2a = p2.y7; o1.p2d = p2.z0; o1.p2c = p2.z1; o1.p2b = p2.z2; o1.p2a = p2.z3; o0.p2d = p2.z4; o0.p2c = p2.z5; o0.p2b = p2.z6; o0.p2a = p2.z7; p3.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 3); o5.p3d = p3.x0; o5.p3c = p3.x1; o5.p3b = p3.x2; o5.p3a = p3.x3; o4.p3d = p3.x4; o4.p3c = p3.x5; o4.p3b = p3.x6; o4.p3a = p3.x7; o3.p3d = p3.y0; o3.p3c = p3.y1; o3.p3b = p3.y2; o3.p3a = p3.y3; o2.p3d = p3.y4; o2.p3c = p3.y5; o2.p3b = p3.y6; o2.p3a = p3.y7; o1.p3d = p3.z0; o1.p3c = p3.z1; o1.p3b = p3.z2; o1.p3a = p3.z3; o0.p3d = p3.z4; o0.p3c = p3.z5; o0.p3b = p3.z6; o0.p3a = p3.z7; p4.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 4); o5.p4d = p4.x0; o5.p4c = p4.x1; o5.p4b = p4.x2; o5.p4a = p4.x3; o4.p4d = p4.x4; o4.p4c = p4.x5; o4.p4b = p4.x6; o4.p4a = p4.x7; o3.p4d = p4.y0; o3.p4c = p4.y1; o3.p4b = p4.y2; o3.p4a = p4.y3; o2.p4d = p4.y4; o2.p4c = p4.y5; o2.p4b = p4.y6; o2.p4a = p4.y7; o1.p4d = p4.z0; o1.p4c = p4.z1; o1.p4b = p4.z2; o1.p4a = p4.z3; o0.p4d = p4.z4; o0.p4c = p4.z5; o0.p4b = p4.z6; o0.p4a = p4.z7; p5.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 5); o5.p5d = p5.x0; o5.p5c = p5.x1; o5.p5b = p5.x2; o5.p5a = p5.x3; o4.p5d = p5.x4; o4.p5c = p5.x5; o4.p5b = p5.x6; o4.p5a = p5.x7; o3.p5d = p5.y0; o3.p5c = p5.y1; o3.p5b = p5.y2; o3.p5a = p5.y3; o2.p5d = p5.y4; o2.p5c = p5.y5; o2.p5b = p5.y6; o2.p5a = p5.y7; o1.p5d = p5.z0; o1.p5c = p5.z1; o1.p5b = p5.z2; o1.p5a = p5.z3; o0.p5d = p5.z4; o0.p5c = p5.z5; o0.p5b = p5.z6; o0.p5a = p5.z7; p6.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 6); o5.p6d = p6.x0; o5.p6c = p6.x1; o5.p6b = p6.x2; o5.p6a = p6.x3; o4.p6d = p6.x4; o4.p6c = p6.x5; o4.p6b = p6.x6; o4.p6a = p6.x7; o3.p6d = p6.y0; o3.p6c = p6.y1; o3.p6b = p6.y2; o3.p6a = p6.y3; o2.p6d = p6.y4; o2.p6c = p6.y5; o2.p6b = p6.y6; o2.p6a = p6.y7; o1.p6d = p6.z0; o1.p6c = p6.z1; o1.p6b = p6.z2; o1.p6a = p6.z3; o0.p6d = p6.z4; o0.p6c = p6.z5; o0.p6b = p6.z6; o0.p6a = p6.z7; p7.word = updatePixel(icPrev, icNext, i + LEDS_PER_STRIP * 7); o5.p7d = p7.x0; o5.p7c = p7.x1; o5.p7b = p7.x2; o5.p7a = p7.x3; o4.p7d = p7.x4; o4.p7c = p7.x5; o4.p7b = p7.x6; o4.p7a = p7.x7; o3.p7d = p7.y0; o3.p7c = p7.y1; o3.p7b = p7.y2; o3.p7a = p7.y3; o2.p7d = p7.y4; o2.p7c = p7.y5; o2.p7b = p7.y6; o2.p7a = p7.y7; o1.p7d = p7.z0; o1.p7c = p7.z1; o1.p7b = p7.z2; o1.p7a = p7.z3; o0.p7d = p7.z4; o0.p7c = p7.z5; o0.p7b = p7.z6; o0.p7a = p7.z7; *(out++) = o0.word; *(out++) = o1.word; *(out++) = o2.word; *(out++) = o3.word; *(out++) = o4.word; *(out++) = o5.word; } } extern "C" int main() { leds.begin(); while (1) { buffers.handleUSB(); updateDrawBuffer((millis() << 2) & 0xFFFF); leds.show(); } }