/* * Effect that controls the total brightness of another effect * * Copyright (c) 2014 Micah Elizabeth Scott <micah@scanlime.org> * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #pragma once #include "effect.h" class Brightness : public Effect { public: Brightness(Effect &next); void set(float averageBrightness); void set(float lowerLimit, float upperLimit); // Set the gamma value we assume when performing total brightness calculations. // Doesn't affect the actual output gamma! We need to sum the brightness in a // physically linear space, but we perform the scaling back in our perceptually // linear-ish space. void setAssumedGamma(float gamma); virtual void beginFrame(const FrameInfo& f); virtual void endFrame(const FrameInfo& f); virtual void debug(const DebugInfo& f); virtual void shader(Vec3& rgb, const PixelInfo& p) const; private: Effect &next; float lowerLimit, upperLimit; std::vector<Vec3> colors; float currentScale; float gamma; }; /***************************************************************************************** * Implementation *****************************************************************************************/ inline Brightness::Brightness(Effect &next) : next(next), lowerLimit(0), upperLimit(1), currentScale(1) { // Fadecandy default setAssumedGamma(2.5); } inline void Brightness::set(float averageBrightness) { lowerLimit = upperLimit = averageBrightness; } inline void Brightness::set(float lowerLimit, float upperLimit) { this->lowerLimit = lowerLimit; this->upperLimit = upperLimit; } inline void Brightness::setAssumedGamma(float gamma) { this->gamma = gamma; } inline void Brightness::beginFrame(const FrameInfo& f) { next.beginFrame(f); colors.resize(f.pixels.size()); unsigned count = 0; // Calculate the next effect's pixels, storing them all. Also count the total number // of mapped pixels, ignoring any unmapped ones. { PixelInfoIter pi = f.pixels.begin(); PixelInfoIter pe = f.pixels.end(); std::vector<Vec3>::iterator ci = colors.begin(); for (;pi != pe; ++pi, ++ci) { if (pi->isMapped()) { next.shader(*ci, *pi); next.postProcess(*ci, *pi); count++; } } } if (count == 0) { // No LEDs mapped return; } // Iterative algorithm to adjust brightness scaling. I'm not sure a closed-form // solution exists- this is complicated for multiple reasons. We want to scale the // entire image in a perceptually linear way, but the final brightness we're interested // in is related to the total linear intensity of all LEDs. Additionally, the brightness // is clamped at each LED, so we may need to increase the brightness of other LEDs to // compensate for individual LEDs that can't get any brighter. Usually this only takes // a few iterations to converge. const unsigned maxIters = 50; const float epsilon = 1e-3; for (unsigned iter = 0; iter < maxIters; iter++) { std::vector<Vec3>::iterator ci = colors.begin(); std::vector<Vec3>::iterator ce = colors.end(); float avg = 0; for (;ci != ce; ++ci) { Vec3& rgb = *ci; // Simulated linear brightness, using current scale for (unsigned i = 0; i < 3; i++) { avg += powf(std::max(0.0f, std::min(1.0f, rgb[i] * currentScale)), gamma); } } avg /= count; // Make the best estimate we can for this iteration float adjustment; if (avg < lowerLimit) { adjustment = powf(lowerLimit / avg, 1.0f / gamma); } else if (avg > upperLimit) { adjustment = powf(upperLimit / avg, 1.0f / gamma); } else { adjustment = 1.0f; } currentScale = std::max(epsilon, currentScale * adjustment); // Was this adjustment negligible? We can quit early. if (fabsf(adjustment - 1.0f) < epsilon) { break; } } } inline void Brightness::endFrame(const FrameInfo& f) { next.endFrame(f); } inline void Brightness::debug(const DebugInfo& d) { next.debug(d); } inline void Brightness::shader(Vec3& rgb, const PixelInfo& p) const { rgb = colors[p.index] * currentScale; }