diff --git a/examples/processing/grid32x16z_particle_fft/OPC.pde b/examples/processing/grid32x16z_particle_fft/OPC.pde new file mode 100644 index 0000000000000000000000000000000000000000..917035d46c7e60be569b8cec80e21363f2bf88da --- /dev/null +++ b/examples/processing/grid32x16z_particle_fft/OPC.pde @@ -0,0 +1,349 @@ +/* + * Simple Open Pixel Control client for Processing, + * designed to sample each LED's color from some point on the canvas. + * + * Micah Elizabeth Scott, 2013 + * This file is released into the public domain. + */ + +import java.net.*; +import java.util.Arrays; + +public class OPC +{ + Socket socket; + OutputStream output; + String host; + int port; + + int[] pixelLocations; + byte[] packetData; + byte firmwareConfig; + String colorCorrection; + boolean enableShowLocations; + + OPC(PApplet parent, String host, int port) + { + this.host = host; + this.port = port; + this.enableShowLocations = true; + parent.registerDraw(this); + } + + // Set the location of a single LED + void led(int index, int x, int y) + { + // For convenience, automatically grow the pixelLocations array. We do want this to be an array, + // instead of a HashMap, to keep draw() as fast as it can be. + if (pixelLocations == null) { + pixelLocations = new int[index + 1]; + } else if (index >= pixelLocations.length) { + pixelLocations = Arrays.copyOf(pixelLocations, index + 1); + } + + pixelLocations[index] = x + width * y; + } + + // Set the location of several LEDs arranged in a strip. + // Angle is in radians, measured clockwise from +X. + // (x,y) is the center of the strip. + void ledStrip(int index, int count, float x, float y, float spacing, float angle, boolean reversed) + { + float s = sin(angle); + float c = cos(angle); + for (int i = 0; i < count; i++) { + led(reversed ? (index + count - 1 - i) : (index + i), + (int)(x + (i - (count-1)/2.0) * spacing * c + 0.5), + (int)(y + (i - (count-1)/2.0) * spacing * s + 0.5)); + } + } + + // Set the location of several LEDs arranged in a grid. The first strip is + // at 'angle', measured in radians clockwise from +X. + // (x,y) is the center of the grid. + void ledGrid(int index, int stripLength, int numStrips, float x, float y, + float ledSpacing, float stripSpacing, float angle, boolean zigzag) + { + float s = sin(angle + HALF_PI); + float c = cos(angle + HALF_PI); + for (int i = 0; i < numStrips; i++) { + ledStrip(index + stripLength * i, stripLength, + x + (i - (numStrips-1)/2.0) * stripSpacing * c, + y + (i - (numStrips-1)/2.0) * stripSpacing * s, ledSpacing, + angle, zigzag && (i % 2) == 1); + } + } + + // Set the location of 64 LEDs arranged in a uniform 8x8 grid. + // (x,y) is the center of the grid. + void ledGrid8x8(int index, float x, float y, float spacing, float angle, boolean zigzag) + { + ledGrid(index, 8, 8, x, y, spacing, spacing, angle, zigzag); + } + + // Should the pixel sampling locations be visible? This helps with debugging. + // Showing locations is enabled by default. You might need to disable it if our drawing + // is interfering with your processing sketch, or if you'd simply like the screen to be + // less cluttered. + void showLocations(boolean enabled) + { + enableShowLocations = enabled; + } + + // Enable or disable dithering. Dithering avoids the "stair-stepping" artifact and increases color + // resolution by quickly jittering between adjacent 8-bit brightness levels about 400 times a second. + // Dithering is on by default. + void setDithering(boolean enabled) + { + if (enabled) + firmwareConfig &= ~0x01; + else + firmwareConfig |= 0x01; + sendFirmwareConfigPacket(); + } + + // Enable or disable frame interpolation. Interpolation automatically blends between consecutive frames + // in hardware, and it does so with 16-bit per channel resolution. Combined with dithering, this helps make + // fades very smooth. Interpolation is on by default. + void setInterpolation(boolean enabled) + { + if (enabled) + firmwareConfig &= ~0x02; + else + firmwareConfig |= 0x02; + sendFirmwareConfigPacket(); + } + + // Put the Fadecandy onboard LED under automatic control. It blinks any time the firmware processes a packet. + // This is the default configuration for the LED. + void statusLedAuto() + { + firmwareConfig &= 0x0C; + sendFirmwareConfigPacket(); + } + + // Manually turn the Fadecandy onboard LED on or off. This disables automatic LED control. + void setStatusLed(boolean on) + { + firmwareConfig |= 0x04; // Manual LED control + if (on) + firmwareConfig |= 0x08; + else + firmwareConfig &= ~0x08; + sendFirmwareConfigPacket(); + } + + // Set the color correction parameters + void setColorCorrection(float gamma, float red, float green, float blue) + { + colorCorrection = "{ \"gamma\": " + gamma + ", \"whitepoint\": [" + red + "," + green + "," + blue + "]}"; + sendColorCorrectionPacket(); + } + + // Set custom color correction parameters from a string + void setColorCorrection(String s) + { + colorCorrection = s; + sendColorCorrectionPacket(); + } + + // Send a packet with the current firmware configuration settings + void sendFirmwareConfigPacket() + { + if (output == null) { + // We'll do this when we reconnect + return; + } + + byte[] packet = new byte[9]; + packet[0] = 0; // Channel (reserved) + packet[1] = (byte)0xFF; // Command (System Exclusive) + packet[2] = 0; // Length high byte + packet[3] = 5; // Length low byte + packet[4] = 0x00; // System ID high byte + packet[5] = 0x01; // System ID low byte + packet[6] = 0x00; // Command ID high byte + packet[7] = 0x02; // Command ID low byte + packet[8] = firmwareConfig; + + try { + output.write(packet); + } catch (Exception e) { + dispose(); + } + } + + // Send a packet with the current color correction settings + void sendColorCorrectionPacket() + { + if (colorCorrection == null) { + // No color correction defined + return; + } + if (output == null) { + // We'll do this when we reconnect + return; + } + + byte[] content = colorCorrection.getBytes(); + int packetLen = content.length + 4; + byte[] header = new byte[8]; + header[0] = 0; // Channel (reserved) + header[1] = (byte)0xFF; // Command (System Exclusive) + header[2] = (byte)(packetLen >> 8); + header[3] = (byte)(packetLen & 0xFF); + header[4] = 0x00; // System ID high byte + header[5] = 0x01; // System ID low byte + header[6] = 0x00; // Command ID high byte + header[7] = 0x01; // Command ID low byte + + try { + output.write(header); + output.write(content); + } catch (Exception e) { + dispose(); + } + } + + // Automatically called at the end of each draw(). + // This handles the automatic Pixel to LED mapping. + // If you aren't using that mapping, this function has no effect. + // In that case, you can call setPixelCount(), setPixel(), and writePixels() + // separately. + void draw() + { + if (pixelLocations == null) { + // No pixels defined yet + return; + } + + if (output == null) { + // Try to (re)connect + connect(); + } + if (output == null) { + return; + } + + int numPixels = pixelLocations.length; + int ledAddress = 4; + + setPixelCount(numPixels); + loadPixels(); + + for (int i = 0; i < numPixels; i++) { + int pixelLocation = pixelLocations[i]; + int pixel = pixels[pixelLocation]; + + packetData[ledAddress] = (byte)(pixel >> 16); + packetData[ledAddress + 1] = (byte)(pixel >> 8); + packetData[ledAddress + 2] = (byte)pixel; + ledAddress += 3; + + if (enableShowLocations) { + pixels[pixelLocation] = 0xFFFFFF ^ pixel; + } + } + + writePixels(); + + if (enableShowLocations) { + updatePixels(); + } + } + + // Change the number of pixels in our output packet. + // This is normally not needed; the output packet is automatically sized + // by draw() and by setPixel(). + void setPixelCount(int numPixels) + { + int numBytes = 3 * numPixels; + int packetLen = 4 + numBytes; + if (packetData == null || packetData.length != packetLen) { + // Set up our packet buffer + packetData = new byte[packetLen]; + packetData[0] = 0; // Channel + packetData[1] = 0; // Command (Set pixel colors) + packetData[2] = (byte)(numBytes >> 8); + packetData[3] = (byte)(numBytes & 0xFF); + } + } + + // Directly manipulate a pixel in the output buffer. This isn't needed + // for pixels that are mapped to the screen. + void setPixel(int number, color c) + { + int offset = 4 + number * 3; + if (packetData == null || packetData.length < offset + 3) { + setPixelCount(number + 1); + } + + packetData[offset] = (byte) (c >> 16); + packetData[offset + 1] = (byte) (c >> 8); + packetData[offset + 2] = (byte) c; + } + + // Read a pixel from the output buffer. If the pixel was mapped to the display, + // this returns the value we captured on the previous frame. + color getPixel(int number) + { + int offset = 4 + number * 3; + if (packetData == null || packetData.length < offset + 3) { + return 0; + } + return (packetData[offset] << 16) | (packetData[offset + 1] << 8) | packetData[offset + 2]; + } + + // Transmit our current buffer of pixel values to the OPC server. This is handled + // automatically in draw() if any pixels are mapped to the screen, but if you haven't + // mapped any pixels to the screen you'll want to call this directly. + void writePixels() + { + if (packetData == null || packetData.length == 0) { + // No pixel buffer + return; + } + if (output == null) { + // Try to (re)connect + connect(); + } + if (output == null) { + return; + } + + try { + output.write(packetData); + } catch (Exception e) { + dispose(); + } + } + + void dispose() + { + // Destroy the socket. Called internally when we've disconnected. + if (output != null) { + println("Disconnected from OPC server"); + } + socket = null; + output = null; + } + + void connect() + { + // Try to connect to the OPC server. This normally happens automatically in draw() + try { + socket = new Socket(host, port); + socket.setTcpNoDelay(true); + output = socket.getOutputStream(); + println("Connected to OPC server"); + } catch (ConnectException e) { + dispose(); + } catch (IOException e) { + dispose(); + } + + sendColorCorrectionPacket(); + sendFirmwareConfigPacket(); + } +} + diff --git a/examples/processing/grid32x16z_particle_fft/data/colors.png b/examples/processing/grid32x16z_particle_fft/data/colors.png new file mode 100644 index 0000000000000000000000000000000000000000..b9d7c42e1050c400036adebc3c83146b18809523 Binary files /dev/null and b/examples/processing/grid32x16z_particle_fft/data/colors.png differ diff --git a/examples/processing/grid32x16z_particle_fft/data/dot.png b/examples/processing/grid32x16z_particle_fft/data/dot.png new file mode 100644 index 0000000000000000000000000000000000000000..908720a8a24f56f8c0add1c05dfe1ddbad25d6d6 Binary files /dev/null and b/examples/processing/grid32x16z_particle_fft/data/dot.png differ diff --git a/examples/processing/grid32x16z_particle_fft/grid32x16z_particle_fft.pde b/examples/processing/grid32x16z_particle_fft/grid32x16z_particle_fft.pde new file mode 100644 index 0000000000000000000000000000000000000000..fdbceaeef07c1f59a84fd8e92e4a931ed045c690 --- /dev/null +++ b/examples/processing/grid32x16z_particle_fft/grid32x16z_particle_fft.pde @@ -0,0 +1,75 @@ +// Some real-time FFT! This visualizes music in the frequency domain using a +// polar-coordinate particle system. Particle size and radial distance are modulated +// using a filtered FFT. Color is sampled from an image. + +import ddf.minim.analysis.*; +import ddf.minim.*; + +OPC opc; +PImage dot; +PImage colors; +Minim minim; +AudioPlayer sound; +FFT fft; +float[] fftFilter; + +String filename = "/Users/micah/Dropbox/music/Mark Farina - Mushroom Jazz Vol 5.mp3"; + +float spin = 0.001; +float radiansPerBucket = radians(2); +float decay = 0.97; +float opacity = 50; +float minSize = 0.1; +float sizeScale = 0.6; + +void setup() +{ + size(600, 300, P3D); + + minim = new Minim(this); + + // Small buffer size! + sound = minim.loadFile(filename, 512); + sound.loop(); + fft = new FFT(sound.bufferSize(), sound.sampleRate()); + fftFilter = new float[fft.specSize()]; + + dot = loadImage("dot.png"); + colors = loadImage("colors.png"); + + // Connect to the local instance of fcserver + opc = new OPC(this, "127.0.0.1", 7890); + + opc.ledGrid8x8(0 * 64, width * 1/8, height * 1/4, height/16, 0, true); + opc.ledGrid8x8(1 * 64, width * 3/8, height * 1/4, height/16, 0, true); + opc.ledGrid8x8(2 * 64, width * 5/8, height * 1/4, height/16, 0, true); + opc.ledGrid8x8(3 * 64, width * 7/8, height * 1/4, height/16, 0, true); + opc.ledGrid8x8(4 * 64, width * 1/8, height * 3/4, height/16, 0, true); + opc.ledGrid8x8(5 * 64, width * 3/8, height * 3/4, height/16, 0, true); + opc.ledGrid8x8(6 * 64, width * 5/8, height * 3/4, height/16, 0, true); + opc.ledGrid8x8(7 * 64, width * 7/8, height * 3/4, height/16, 0, true); +} + +void draw() +{ + background(0); + + fft.forward(sound.mix); + for (int i = 0; i < fftFilter.length; i++) { + fftFilter[i] = max(fftFilter[i] * decay, log(1 + fft.getBand(i))); + } + + for (int i = 0; i < fftFilter.length; i += 3) { + color rgb = colors.get(int(map(i, 0, fftFilter.length-1, 0, colors.width-1)), colors.height/2); + tint(rgb, fftFilter[i] * opacity); + blendMode(ADD); + + float size = height * (minSize + sizeScale * fftFilter[i]); + PVector center = new PVector(width * (fftFilter[i] * 0.2), 0); + center.rotate(millis() * spin + i * radiansPerBucket); + center.add(new PVector(width * 0.5, height * 0.5)); + + image(dot, center.x - size/2, center.y - size/2, size, size); + } +} +